forked from wptay/aipt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path6_Borel_Cantelli_Lemmas.tex
309 lines (287 loc) · 12.5 KB
/
6_Borel_Cantelli_Lemmas.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
\documentclass[12pt]{article}
\input{prob_preamble.tex}
\externaldocument{3_ProbabilitySpaces}
\externaldocument{4_Random_Variables}
\begin{document}
\handout{6}{Borel-Cantelli Lemmas}
\section{Introduction}
Let $A_1, A_2, \ldots \in \calA$ be an infinite sequence of events. Let $N(\omega) = \sum_{i=1}^{\infty} \indicatore{A_i}(\omega)$. The set of sample points $\omega\in\Omega$ that belong to events in $\{A_1,A_2,\ldots\}$ infinitely often (i.o.) is given by
\begin{align*}
\big\{A_n \io\big\} \triangleq \big\{\omega: N(\omega) &= \infty\big\} = \bigcap_{n \geq 1} \bigcup_{m \geq n} A_m \triangleq \limsup_{n \to \infty} A_n.
\end{align*}
Note that $\indicator{A_n\io} = \limsup_{n\to\infty}\indicatore{A_n}$.
The set of sample points that belong finitely often (f.o.) to the events in the sequence is
\begin{align*}
\big\{A_n \ \text{f.o.}\big\} \triangleq \big\{\omega: N(\omega) &< \infty\big\} = \bigcup_{n \geq 1} \bigcap_{m \geq n} A_m^c \triangleq \liminf_{n \to \infty} A_n^c.
\end{align*}
Similarly, $\indicator{A_n\fo} = \liminf_{n\to\infty}\indicatore{A_n^c}$.
Notice that $\big\{A_n \io\big\}$ and $\big\{A_n \ \text{f.o.}\big\}$ are complements of each other. Thus, $\P(A_n \io) + \P(A_n \ \text{f.o.}) = 1$.
As an example, suppose $X_n(\omega) \to 0$ for all $\omega\in\Omega$, then
\begin{align*}
\exists n_0(\omega),\ \st X_n(\omega) \leq 1, \forall n \geq n_0(\omega).
\end{align*}
Therefore $\omega\in\{X_n \geq 1\}$ cannot be infinitely often (i.o.).
\section{Borel-Cantelli Lemmas}
\begin{Lemma}[Borel-Cantelli Lemmas] \label{wk6:lemma:borel_cantelli}\
\begin{enumerate}[(i)]
\item If $\sum_{n \geq 1} \P(A_n) < \infty$, then $\P(A_n \io)= 0$.
\item If $A_1, A_2, \ldots$ are independent, and $\sum_{n \geq 1} \P(A_n) = \infty$, then $\P(A_n \io) = 1$.
\end{enumerate}
\end{Lemma}
%
\begin{proof}\
\begin{enumerate}[(i)]
\item
Let $B_n = \bigcup_{m \geq n}A_m$, then $B_{n+1} \subset B_n$. We have
\begin{align*}
\P(A_n \io)
= \P(\bigcap_{n \geq 1} B_n)
= \lim_{n \to \infty} \P(B_n)
\leq \lim_{n \to \infty} \sum_{m \geq n} \P(A_m),
\end{align*}
where the second equality and last inequality follow from \cref{wk3:lem:increasing_seq} and \cref{wk3:lem:union_bound}, respectively. Since $\sum_{n \geq 1} \P(A_n) < \infty$, we have $\lim_{n \to \infty} \sum_{m \geq n} \P(A_m) = 0$.
\item
Let $C_n = \bigcap_{m \geq n} A_m^c$. From independence, we have
\begin{align*}
\P(C_n)
= \prod_{m \geq n} \P(A_m^c)
&= \prod_{m \geq n} \left(1 - \P(A_m)\right) \\
&\leq \prod_{m \geq n} e^{-\P(A_m)} \ \left(\text{using } 1 - p \leq e^{-p}\right) \\
&= \exp\left(-\sum_{m \geq n} \P(A_m)\right) = 0.
\end{align*}
Therefore, we obtain
\begin{align*}
\P(A_n\ \text{f.o.}) = \P(\bigcup_{n \geq 1}C_n) \leq \sum_{n \geq 1} \P(C_n) = 0 \implies \P(A_n\io) = 1.
\end{align*}
\end{enumerate}
\end{proof}
We can strengthen the second Borel-Cantelli Lemma as follows.
\begin{Lemma}\label{wk3:lem:BC-pairwise}
If $A_1, A_2, \ldots$ are pairwise independent, and $\sum_{n \geq 1} \P(A_n) = \infty$, then $\P(A_n \io) = 1$.
\end{Lemma}
\begin{proof}
Let $N_n = \sum_{k=1}^{n} \indicatore{A_k}$. We have
\begin{align}
\E N_n
&= \sum_{k=1}^n \P(A_k), \nn
\var(N_n)
&= \sum_{k=1}^n\P(A_k)\left(1-\P(A_k)\right) \nn
&\leq \E N_n.\label{varNn}
\end{align}
Furthermore, we have
\begin{align*}
\P(N_n \leq \frac{1}{2}\E N_n)
&\leq \P(|N_n - \E N_n| \geq \frac{1}{2} \E N_n) \\
&\leq \frac{4}{\left(\E N_n\right)^2} \var(N_n) \quad \text{from Chebyshev's inequality} \\
&\leq \frac{4}{\E N_n}.
\end{align*}
Since $N_n \leq N =\sum_{k\geq1} \indicatore{A_k}$, we obtain
\begin{align*}
\P(N \leq \frac{1}{2}\E N_n)
\leq \P(N_n \leq \frac{1}{2}\E N_n)
\leq \frac{4}{\E N_n}.
\end{align*}
Moreover, we have
\begin{align*}
&\lim_{n \to \infty} \E N_n = \lim_{n \to \infty} \sum_{k=1}^n \P(A_k) = \infty, \\
\implies
&\lim_{n \to \infty} \P(N \leq \frac{1}{2}\E N_n) \leq \lim_{n \to \infty} \frac{4}{\E N_n} = 0.
\end{align*}
We claim that
\begin{align*}
&\indicatore{\{N \leq \frac{1}{2} \E N_n\}}(\omega) \to \indicatore{\{N <\infty\}}(\omega),
\end{align*}
since if $N(\omega)<\infty$, then for $n$ sufficiently large, $\indicatore{\{N \leq \frac{1}{2} \E N_n\}}(\omega)=1$, otherwise $\indicatore{\{N \leq \frac{1}{2} \E N_n\}}(\omega)=0$ for all $n\geq 1$. Therefore from DCT, we have
\begin{align*}
&\P(A_n \ \text{f.o}) = \P(N < \infty) = \lim_{n \to \infty} \P(N \leq \frac{1}{2} \E N_n) = 0,
\end{align*}
and
\begin{align*}
&\P(A_n \ \text{i.o}) = 1.
\end{align*}
\end{proof}
%
\begin{Remark}
The condition of pairwise independence in \cref{wk3:lem:BC-pairwise} can be strengthened to $\P(A_i \cap A_j) \leq \P(A_i)\P(A_j), \forall\ i \neq j$ since \cref{varNn} still holds under this condition.
\end{Remark}
In the following, we first prove a bound that will be useful in further generalizing the second Borel-Cantelli Lemma.
\begin{Lemma}[Second moment method]\label{wk6:lem:2ndmoment}
For $0\leq\rho<1$ and $X \geq 0$ with $\E X < \infty$,
\begin{align*}
\P(X > \rho \E X) \geq (1-\rho)^2\frac{(\E X)^2}{\E X^2}.
\end{align*}
\end{Lemma}
\begin{proof}
Let $A = \{ X > \rho \E X\}$. We have
\begin{align*}
\E X = \E X\indicatore{A} + \E X\indicatore{A^c} &\leq \E X\indicatore{A} + \rho \E X,\\
(1-\rho)\E X \leq \E X\indicatore{A}.
\end{align*}
From the Cauchy-Schwarz inequality,
\begin{align*}
(1-\rho)^2(\E X)^2 \leq \left(\E X\indicatore{A}\right)^2 \leq \E X^2 \P(A),
\end{align*}
and the result follows.
\end{proof}
\begin{Lemma}[Kochen-Stone]
If $\sum_{n \geq 1} \P(A_n) = \infty$, then
\begin{align*}
\P(A_n \io) \geq \limsup_{n \to \infty} \frac{\left(\sum_{k=1}^n\P(A_k)\right)^2}{\sum_{i, j=1}^n \P(A_i \cap A_j)}.
\end{align*}
\end{Lemma}
%
\begin{proof}
Let $N_n = \sum_{k=1}^{n} \indicatore{A_k}$. We have
\begin{align*}
\E N_n
&= \sum_{i=1}^n \P(A_i), \\
\E N_n^2
&= \sum_{i,j=1}^n P(A_i \cap A_j).
\end{align*}
Let $0 < \rho < 1$. Because $\lim_{n \to \infty} \E N_n = \lim_{n \to \infty} \sum_{i=1}^n \P(A_i) = \infty$, we have $\{A_n \fo\} \subset \{N_n \leq \rho\E N_n,\ \forall n\geq n_0,\ \text{for some } n_0\geq 1\}$. Therefore, $\{A_n \io\} \supset \{N_n > \rho\E N_n \io\}$ and
\begin{align*}
\P(A_n \io)
&\geq \P(N_n > \rho \E N_n \io) \\
&\geq \limsup_{n \to \infty} \P(N_n > \rho \E N_n) \ \text{(from Fatou's Lemma)} \\
&\geq \limsup_{n \to \infty} (1-\rho)^2 \frac{(\E N_n)^2}{\E N_n^2} \ \text{(from \cref{wk6:lem:2ndmoment})}.
\end{align*}
Taking $\rho \to 0$, we obtain
\begin{align*}
\P(A_n \io) \geq \limsup_{n \to \infty} \frac{\left(\sum_{k=1}^n\P(A_k)\right)^2}{\sum_{i, j=1}^n \P(A_i \cap A_j)}.
\end{align*}
\end{proof}
%
\begin{Lemma} \label{wk6:lemma:sum_P_finite_convto_0}
For $X_1, X_2, \ldots,\ \st \sum_{n \geq 1} \P(|X_n| \geq \epsilon) < \infty, \forall\ \epsilon > 0$, we have
\begin{align*}
X_n \to 0 \text{ a.s. as } n \to \infty.
\end{align*}
%
\begin{proof}
Let
\begin{align*}
F
&= \set*{\omega\given \limsup_{n \to \infty}|X_n| > 0} \\
&= \bigcup_{m \geq 1} \set*{\omega\given \limsup_{n \to \infty}|X_n| > \frac{1}{m}}.
\end{align*}
Let $A_n = \{\omega: |X_n| > \frac{1}{m}\}$. We have $\sum_{n \geq 1} \P(A_n) < \infty$. From the first Borel-Cantelli Lemma, we have
\begin{align*}
\P(A_n \io) = 0.
\end{align*}
Then, $\P(\limsup_{n \to \infty}|X_n| > \frac{1}{m}) \leq \P(A_n \io) =0$.
\begin{align*}
&\implies \P(F) = 0 \\
&\implies \limsup_{n \to \infty}|X_n| = 0 \ \text{a.s.}
\implies \lim_{n \to \infty}|X_n| = 0 \ \text{a.s.}.
\end{align*}
\end{proof}
\end{Lemma}
%
\begin{Corollary} \label{wk6:cor:convp_implies_conv_as}
If $X_n \convp X$, then $\exists$ subsequence $(n(k))_{k\geq1}$ such that $X_{n(k)} \to X$ a.s.
\end{Corollary}
\begin{proof}
By the definition of convergence in probability, we can choose $(n(k))_{k\geq1}$ such that $\forall \epsilon > 0$, we have
\begin{align*}
\P(|X_{n(k)} - X| \geq \epsilon) \leq \frac{1}{2^k},\ \forall k \geq 1.
\end{align*}
Summing both sides over $k \geq 1$, we obtain
\begin{align*}
\sum_{k \geq 1} \P(|X_{n(k)} - X| \geq \epsilon) \leq 1.
\end{align*}
By \cref{wk6:lemma:sum_P_finite_convto_0}, we have $|X_{n(k)} - X| \to 0$ a.s.
\end{proof}
%
\begin{Lemma}\label{wk6:lem:convp_subsubseq}
$X_n \convp X$ iff for any subsequence $\left(n(k)\right)_{k \geq 1}$, $\exists$ subsubsequence $\left(n\left(k(r)\right)\right)_{r \geq 1}$, $\st X_{n \left(k(r)\right)} \to X$ a.s.
\end{Lemma}
\begin{proof}
`$\Rightarrow$': It is obvious by \cref{wk6:cor:convp_implies_conv_as}.
'$\Leftarrow$': Suppose $X_n$ does not converge in probability to $X$. Then, $\exists \epsilon > 0$ and subsequence $\left(n(k)\right)_{k \geq 1}$, such that
\begin{align*}
\P(|X_{n(k)} -X| \geq \epsilon) \geq \epsilon,\ \forall k \geq 1.
\end{align*}
Consequently, $\forall \left(n\left(k(r)\right)\right)_{r \geq 1}$, $X_{n \left(k(r)\right)} \not\to X$ a.s., which contradicts the claim.
\end{proof}
Note that \cref{wk6:lem:convp_subsubseq} implies that the DCT holds with ``almostly surely convergence'' replaced by ``convergence in probability''.
\section{SLLN with Finite 2nd Moments}
\begin{Lemma}\label{wk6:lemma:SLLN_2nd_moments}
Suppose $X_1, X_2, \ldots$ are pairwise independent, $\E X_i = 0$, $\E X_i^2 \leq M < \infty$, $\forall i \geq 1$. Let $S_n = \sum_{i=1}^n X_i$. Then $\frac{S_n}{n} \to 0$ a.s. as $n \to \infty$.
\end{Lemma}
\begin{proof}
From \cref{wk6:lemma:sum_P_finite_convto_0}, it suffices to prove $\P(\abs*{\dfrac{S_n}{n}} > \epsilon \io) = 0$, $\forall \epsilon > 0$.
By applying Chebyshev's inequality, we obtain
\begin{align*}
\P(\frac{|S_n|}{n} \geq \epsilon) \leq \frac{\E S_n^2}{\epsilon^2 n^2} \leq \frac{M}{\epsilon^2 n}.
\end{align*}
Unfortunately, $\sum_{n\geq1} 1/n = \infty$ so we cannot obtain the desired conclusion immediately using the Boral Cantelli Lemma. Instead, we use a subsequence ``trick'' here. Letting $n(k) = k^2$ and summing both sides of above equation over $n(k)$ where $k \geq 1$, we obtain
\begin{align*}
\sum_{k=1}^{\infty} \P(\frac{|S_{n(k)}|}{n(k)} \geq \epsilon)
\leq \frac{M}{\epsilon^2} \sum_{k=1}^{\infty} \frac{1}{k^2} < \infty.
\end{align*}
By applying \cref{wk6:lemma:borel_cantelli}, we obtain $\dfrac{|S_{n(k)}|}{n(k)} \to 0$ a.s. as $k \to \infty$.
Let $\Delta_k = \max \big\{|S_n - S_{n(k)}|: n(k) < n < n(k+1)\big\}$. For $n(k) \leq n < n(k+1)$, we have
\begin{align*}
&\frac{|S_n|}{n} \leq \frac{|S_{n(k)}|}{n(k)} + \frac{\Delta_k}{n(k)}, \\
\implies
&\limsup_{n \to \infty}\frac{|S_n|}{n} \leq \limsup_{k \to \infty}\frac{|S_{n(k)}|}{n(k)} + \limsup_{k \to \infty}\frac{\Delta_k}{n(k)} = \limsup_{k \to \infty}\frac{\Delta_k}{n(k)}.
\end{align*}
The proof is complete if we show $\dfrac{\Delta_k}{n(k)} \to 0$ a.s. as $k \to \infty$. Let $B_j = \big\{\omega: |S_{n(k)+j} - S_{n(k)}| \geq \epsilon n(k)\big\}$, for $1 \leq j \leq 2k$. We have
\begin{align*}
\P(\Delta_k \geq \epsilon n(k))
&= \P(\bigcup_{j=1}^{2k} B_j)\\
&\leq \sum_{j=1}^{2k} \P(|S_{n(k)+j} - S_{n(k)}| \geq \epsilon n(k)) \\
&\leq \sum_{j=1}^{2k} \frac{jM}{\epsilon^2 {n(k)}^2}
= \frac{M}{\epsilon^2 k^3} (2k +1).
\end{align*}
Summing both sides over $k \geq 1$, we obtain
\begin{align*}
\sum_{k=1}^{\infty} \P(\frac{\Delta_k}{n(k)} \geq \epsilon)
\leq \frac{M}{\epsilon^2} \sum_{k=1}^{\infty} \frac{2k +1}{k^3} < \infty.
\end{align*}
From \cref{wk6:lemma:sum_P_finite_convto_0}, we obtain $\dfrac{\Delta_k}{n(k)} \to 0$ a.s. as $k \to \infty$, and the proof is complete.
\end{proof}
%
For $X \geq 0$, we have
\begin{align*}
\sum_{k=1}^{\infty} \indicatore{\{X \geq k\}} &\leq X \leq \sum_{k=0}^{\infty} \indicatore{\{X \geq k\}}.
\end{align*}
Therefore, for any $X$, we obtain
\begin{align*}
\sum_{k=1}^{\infty} \P(|X| \geq k) &\leq \E |X| \leq \sum_{k=0}^{\infty} \P(|X| \geq k),\\
\sum_{k=1}^{\infty} \P(|X| \geq k) &\leq \infty \iff \E |X| < \infty.
\end{align*}
As a side note, if $X \in \bbZ_{+}$, we have the following equality:
\begin{align*}
X &= \sum_{k=1}^{\infty} \indicatore{\{X \geq k\}},\\
\E X &= \sum_{k=1}^{\infty} \P(X \geq k).
\end{align*}
%
\begin{Lemma}
Suppose $X_1, X_2, \ldots$ are i.i.d. Then,
\begin{align*}
\lim_{n \to \infty} \frac{X_n}{n} = 0\ \as \iff \E |X_1| < \infty.
\end{align*}
\end{Lemma}
\begin{proof}\
`$\Rightarrow$':
\begin{align*}
\lim_{n \to \infty} \frac{X_n}{n} = 0\ \as \implies \P(\frac{|X_n|}{n} \geq 1 \io)=0.
\end{align*}
From the second Borel-Cantelli Lemma, we have
\begin{align*}
&\sum_{n \geq 1}\P(\frac{|X_n|}{n} \geq 1) < \infty \\
&\sum_{n \geq 1}\P(|X_1| \geq n) < \infty \\
&\E |X_1| < \infty.
\end{align*}
`$\Leftarrow$':
\begin{align*}
\E \left|\frac{X_1}{\epsilon}\right| < \infty
\implies
\sum_{n \geq 1}\P(|X_n| \geq n \epsilon) < \infty.
\end{align*}
The result then follows from \cref{wk6:lemma:sum_P_finite_convto_0}.
\end{proof}
%\bibliography{mybib}
\bibliographystyle{alpha}
\end{document}