forked from wptay/aipt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path7_StrongLaw_of_LargeNumbers.tex
468 lines (443 loc) · 18.6 KB
/
7_StrongLaw_of_LargeNumbers.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
\documentclass[12pt]{article}
\input{prob_preamble.tex}
\externaldocument{3_ProbabilitySpaces}
\externaldocument{4_Random_Variables}
\externaldocument{5_Convergence_and_Independence}
\externaldocument{6_Borel_Cantelli_Lemmas}
\begin{document}
\handout{7}{Strong Law of Large Numbers}
\section{SLLN}
In this note, we prove the Strong Law of Large Numbers (SLLN). We give three different proofs of SLLN, which are based on the ideas of maximal inequality, truncation, and positivity. First, let us state the SLLN.
\begin{Theorem}[Kolmogorov's SLLN]
Suppose $X_1, X_2, \ldots$ are i.i.d.\ random variables, $\E |X_1| < \infty$, $\E X_1 = 0$, and $S_n = \sum_{i=1}^n X_i$. We have
\begin{align*}
\frac{S_n}{n} \to 0 \ \text{a.s. as} \ n \to \infty.
\end{align*}
\end{Theorem}
\section{The First Proof: \texorpdfstring{$L^1$}{L1} Maximal Inequality}
For a sequence $a_1, a_2, \ldots, a_N$, we say that $a_j$ is an $n$-leader if $a_j + a_{j+1} + \ldots + a_k > 0$ for some $k$ such that $j \leq k \leq N$ and $k - j + 1 \leq n \leq N$.
\begin{Lemma} \label{wk7:lemma:n_leader}
Let $G \neq \emptyset$ be the set of indices of all $n$-leaders of $a_1, \ldots, a_N$. Then
\begin{align*}
\sum_{j \in G} a_j > 0.
\end{align*}
\end{Lemma}
\begin{proof}
Let
\begin{align*}
j_1 &= \min G, \\
k_1 &= \min \{k \geq j_1 : a_{j_1} + \ldots + a_k > 0\}.
\end{align*}
Since $j_1\in G$, $k_1 \leq N$ exists and $k_1 - j_1 + 1 \leq n$. Then we have $\sum_{j = j_1}^{s-1} a_j < 0$ for $j_1 \leq s \leq k_1$. Therefore,
\begin{align*}
&\sum_{k=s}^{k_1} a_j = \sum_{j=j_1}^{k_1} a_j - \sum_{j=j_1}^{s-1} a_j > 0, \\
\end{align*}
This implies that $s \in G$ and hence $\left[j_1, k_1\right] \subset G$. Let $G_1 = G \backslash \left[j_1, k_1\right] \neq \emptyset$ and repeat the same process until $G_{l+1}=\emptyset$ for some $l$. We obtain
\begin{align*}
\bigcup_{i=1}^{l} [j_i, k_i] = G,
\end{align*}
where $\left[j_i, k_i\right] \cap \left[j_m, k_m\right] = \emptyset,\ \forall i \neq m$. Finally, we have
\begin{align*}
\sum_{j \in G} a_j = \sum_{i=1}^{l} \sum_{s=j_i}^{k_i} a_s > 0.
\end{align*}
\end{proof}
\begin{Theorem}[$L^1$ maximal inequality] \label{wk7:thm:maximal_inequality}
Let $X_k$, $k \geq 1$, be i.i.d.\ random variables. Then, $\forall \epsilon > 0$,
\begin{align*}
\P(\max_{1 \leq k \leq n} \frac{S_k}{k} > \epsilon) \leq \ofrac{\epsilon}\E X_1^+.
\end{align*}
\end{Theorem}
\begin{proof}
Fix $\epsilon > 0$ and $N>1$. For $1\leq n \leq N$, let
\begin{align*}
A_j = \set*{\omega\given \max_{\mathclap{\substack{1 \leq k \leq n \\ j+k-1 \leq N}}} \frac{S(j,j+k-1)}{k} > \epsilon},
\end{align*}
where $S(j,k) = X_j + \ldots + X_k$. From the definition, we have
\begin{align*}
A_j = \set*{\omega\given a_j(\omega) \ \text{is $n$-leader in} (a_1, a_2, \ldots, a_N)},
\end{align*}
where $a_j(\omega) = X_j(\omega) - \epsilon$.
Applying \cref{wk7:lemma:n_leader}, we obtain
\begin{align*}
\sum_{j=1}^N (X_j - \epsilon) \indicatore{A_j} > 0,
\end{align*}
which yields
\begin{align}
\epsilon \sum_{j=1}^{N-n} \indicatore{A_j}
\leq \epsilon \sum_{j=1}^N \indicatore{A_j}
< \sum_{j=1}^N X_j \indicatore{A_j}
\leq \sum_{j=1}^N X_j^+. \label{ineq:L1}
\end{align}
Furthermore, for $1 \leq j \leq N- n$, since the $X_i$'s are i.i.d., we have
\begin{align*}
\P(A_j)
= \P(A_1)
&= \P(\max_{1 \leq k \leq n} \frac{S_k}{k} > \epsilon).
\end{align*}
Taking expectations in \cref{ineq:L1}, we obtain
\begin{align*}
\epsilon (N-n) \P(A_1) &\leq N \E X_1^+ \\
\frac{N-n}{N} \P(A_1) &\leq \frac{1}{\epsilon} \E X_1^+.
\end{align*}
By taking $N \to \infty$, the proof is complete.
\end{proof}
\begin{Corollary} \label{wk7:cor:maximal_inequality}
Let $X_k, k \geq 1$ be i.i.d random variables. Then, $\forall\ \epsilon > 0$,
\begin{align*}
\P(\max_{1 \leq k \leq n} \left|\frac{S_k}{k}\right| > \epsilon) \leq \frac{1}{\epsilon} \E |X_1|.
\end{align*}
\end{Corollary}
\begin{proof}
Apply the $L^1$ maximal inequality to $(X_k)$ and $(-X_k)$.
\end{proof}
We are now ready to give the first proof of the SLLN. Fix $\lambda>0$. Let
\begin{align*}
X_k' &= X_k \indicatore{\{|X_k| \leq \lambda\}}, \\
X_k'' &= X_k \indicatore{\{|X_k| > \lambda\}}.
\end{align*}
As the threshold $\lambda$ is fixed for all $k$, this is known as \emph{fixed truncation}. We let
\begin{align*}
S_n' &= X_1' + \ldots + X_n', \\
S_n'' &= X_1'' + \ldots + X_n'',
\end{align*}
so that $S_n = S_n' + S_n''$. We have
\begin{align*}
&\E X_k' + \E X_k'' = \E X_k = 0, \\
& S_n = S_n' - n\E X_1' + S_n'' - n\E X_1'',\\
&\left| \frac{S_n}{n} \right| \leq
\left| \frac{S_n'}{n} - \E X_1 \indicatore{\{|X_1| \leq \lambda\}} \right| +
\left| \frac{S_n''}{n} - \E X_1 \indicatore{\{|X_1| > \lambda\}} \right|.
\end{align*}
Since $X_k'$ has bounded moments, we can apply the SLLN with 2nd moments (\cref{wk6:lemma:SLLN_2nd_moments}) to obtain
\begin{align*}
\left| \frac{S_n'}{n} - \E X_1 \indicatore{\{|X_1| \leq \lambda\}} \right| \to 0 \ \text{a.s.}
\end{align*}
Furthermore, we have
\begin{align*}
L =
\limsup_{n \to \infty} \left| \frac{S_n}{n} \right|
&\leq \limsup_{n \to \infty} \left| \frac{S_n''}{n} - \E X_1 \indicatore{\{|X_1| > \lambda\}} \right| \\
&\leq \sup_{n \geq 1} \left| \frac{S_n''}{n} - \E X_1 \indicatore{\{|X_1| > \lambda\}} \right| \\
&\leq \sup_{n \geq 1} \left| \frac{S_n''}{n} \right| + \E X_1 \indicatore{\{|X_1| > \lambda\}} .
\end{align*}
Since $\E X_1 \indicatore{\{|X_1| > \lambda\}} \leq \E |X_1| < \infty$, we apply DCT (\cref{Dominated Convergence Theorem}) to obtain
\begin{align*}
\lim_{\lambda \to \infty} \E X_1 \indicatore{\{|X_1| > \lambda\}}
= \E X_1 \indicatore{\{|X_1| = \infty\}} = 0.
\end{align*}
Therefore, $\forall \epsilon > 0$, $\exists \lambda_0$ such that
\begin{align*}
\E X_1 \indicatore{\{|X_1| > \lambda\}} < \epsilon,\ \forall \lambda \geq \lambda_0.
\end{align*}
By using the above result and applying \cref{wk7:cor:maximal_inequality}, we obtain for all $\lambda \geq \lambda_0$,
\begin{align*}
\P(L > 2\epsilon)
&\leq \P(\sup_{n \geq 1} \left| \frac{S_n''}{n} \right| > \epsilon) \\
&\leq \lim_{\lambda \to \infty} \frac{1}{\epsilon} \E |X_1| \indicatore{\{|X_1| > \lambda\}} = 0.
\end{align*}
Taking $\epsilon \to 0$, we have
\begin{align*}
\P(L > 0) = 0 \implies \P(L = 0) = 1
\implies
\frac{S_n}{n} \to 0 \ \text{a.s. as} \ n \to \infty.
\end{align*}
The first proof of SLLN is now complete.
%
%
\section{The Second Proof: Kolmogorov}
We next discuss Kolmogorov's proof of SLLN, which was done around 1930.
\begin{Theorem}[Kolmogorov's maximal inequality] \label{wk7:lemma:Kolmogorov_maximal_ineq}
Suppose $X_k, k \geq 1$ are independent random variables and $\E |X_k| < \infty$, then
\begin{align*}
\P(\max_{1 \leq k \leq n} |S_k| \geq \lambda)
\leq \frac{1}{\lambda^2} \var(S_n),\ \forall\ \lambda > 0.
\end{align*}
\end{Theorem}
Note that $\var(S_n)$ always exists. If it is infinite, then the bound is trivial.
\begin{proof}
Without loss of generality, we assume $\E X_k = 0$. Let
\begin{align*}
&\tau = \min \set*{1 \leq k \leq n \given |S_k| \geq \lambda},
\end{align*}
where $\tau = \infty$ if $|S_k|<\lambda$ for all $1\leq k\leq n$. Define
\begin{align*}
&S_\tau = \sum_{k=1}^n S_k \indicatore{\{\tau = k\}}.
\end{align*}
Since
\begin{align*}
&\lambda^2 \indicatore{\{\max_{1 \leq k \leq n} |S_k| \geq \lambda\}} \leq S_{\tau}^2,
\end{align*}
we obtain
\begin{align*}
&\lambda^2 \P(\max_{1 \leq k \leq n} |S_k| \geq \lambda) \leq \E S_{\tau}^2.
\end{align*}
It suffices to prove $\E S_{\tau}^2 \leq \E S_n^2$. We have
\begin{align*}
S_n &= S_{\tau} + S_n - S_{\tau}, \\
S_n^2 &= S_{\tau}^2 + \left(S_n - S_{\tau}\right)^2 + 2S_{\tau}\left(S_n - S_{\tau}\right),
\end{align*}
and
\begin{align*}
\E S_{\tau}\left(S_n - S_{\tau}\right)
&= \E[\sum_{k=1}^n \indicatore{\{\tau = k\}} S_k\left(S_n - S_k\right)] \\
&= \sum_{k=1}^n \E[\indicatore{\{\tau = k\}} S_k] \E \left(S_n - S_k\right) = 0,
\end{align*}
where the penultimate equality follows from independence. We thus have
\begin{align*}
\E S_{\tau}^2 \leq \E S_n^2,
\end{align*}
and the proof is complete.
\end{proof}
\begin{Theorem}[Variance convergence criterion] \label{wk7:thm:var_conv_criteria}
Suppose $Y_k,\ k \geq 1$ are independent random variables and $\E Y_k = 0$. If $\sum_{k=1}^{\infty} \var(Y_k) < \infty$, then
\begin{align*}
\sum_{k=1}^{\infty} Y_k \ \text{converges a.s.}
\end{align*}
\end{Theorem}
\begin{proof}
Let $S_n(\omega) = \sum_{k=1}^n Y_k(\omega)$. It suffices to show that $(S_n)_{n \geq 1}$ is Cauchy a.s., i.e.,
\begin{align*}
R_N = \sup_{n,m \geq N} |S_n - S_m| \to 0 \ \text{a.s. as} \ N \to \infty.
\end{align*}
Let $N \geq N_0 \geq 1$. We have
\begin{align*}
R_N
&\leq R_{N_0} \\
&\leq \sup_{n \geq N_0} |S_n - S_{N_0}| + \sup_{m \geq N_0} |S_m - S_{N_0}|.
\end{align*}
Therefore, $\forall \epsilon > 0$,
\begin{align*}
\P(\limsup_{N \to \infty} R_N > \epsilon)
&\leq 2 \P(\sup_{n \geq N_0} |S_n - S_{N_0}| > \frac{\epsilon}{2}) \\
&\leq \frac{8}{\epsilon^2} \sum_{k = N_0 +1}^{\infty} \var(Y_k),
\end{align*}
where the last inequality follows from Chebyshev's inequality. Since $\sum_{k=1}^{\infty} \var(Y_k) < \infty$, we have
\begin{align*}
&\lim_{N_0 \to \infty}\sum_{k = N_0 +1}^{\infty} \var(Y_k) = 0 \\
\implies
&\P(\limsup_{N \to \infty} R_N > \epsilon) = 0.
\end{align*}
\end{proof}
Let $\hat{X}_k = X_k \indicatore{\{|X_k| \leq k\}}$. This is called \emph{moving truncation}. We have
\begin{align*}
\sum_{k=1}^{\infty} \P(\hat{X}_k \neq X_k)
&= \sum_{k \geq 1} \P(|X_k| > k) \\
&= \sum_{k \geq 1} \P(|X_1| > k) \\
&\leq \E |X_1| < \infty.
\end{align*}
From the first Borel-Cantelli lemma (\cref{wk6:lemma:borel_cantelli}), we obtain $\P(\hat{X}_k \neq X_k \ \text{i.o}) = 0$, which means that for a.s.\ all $\omega \in \Omega$, $\exists K(\omega)\ \st X_k(\omega) = \hat{X}_k(\omega), \forall k \geq K(\omega)$. Therefore, $\dfrac{1}{n} \sum_{k=1}^{n} X_k \to 0 \ \text{a.s.}$ if and only if $\dfrac{1}{n} \sum_{k=1}^{n} \hat{X}_k \to 0 \ \text{a.s.}$ In the rest of this section, we prove $\dfrac{1}{n} \sum_{k=1}^{n} \hat{X}_k \to 0 \ \text{a.s.}$.
\begin{Lemma} \label{wk7:lemma:var_mean_ineq}
Suppose $X_k,\ k \geq 1$ are identically distributed random variables and $\hat{X}_k = X_k \indicatore{\{|X_k| \leq k\}}$. We have
\begin{align*}
\sum_{k=1}^{\infty} \frac{\var(\hat{X}_k)}{k^2} \leq 2 \E |X_1|.
\end{align*}
\end{Lemma}
%
\begin{proof}
\begin{align*}
\sum_{k=1}^{\infty} \frac{\var(\hat{X}_k)}{k^2}
&\leq \sum_{k=1}^{\infty} \frac{\E \hat{X}_k^2}{k^2} \\
&= \sum_{k=1}^{\infty} \frac{1}{k^2} \E[X_1^2 \indicatore{\{|X_1| \leq k\}}] \\
&= \E[X_1^2 \sum_{k=1}^{\infty} \frac{1}{k^2} \indicatore{\{|X_1| \leq k\}}] \\
&\leq 2 \E |X_1|,
\end{align*}
where the last equality comes from Fubini's theorem (\cref{wk5:Fubini_theorem}) and the last inequality is because
\begin{align*}
\phi(x) = x^2\sum_{k\geq1} \ofrac{k^2} \indicator{x\leq k} \leq 2x
\end{align*}
for all $x\geq0$. To prove this, we note that
\begin{align*}
\int_{i-1}^{\infty} \frac{1}{x^2} \ud x = \frac{1}{i-1} \geq \sum_{k = i}^{\infty} \frac{1}{k^2}.
\end{align*}
If $0 \leq x \leq 1$, we have
\begin{align*}
\phi(x) = x^2 \sum_{k = 1}^{\infty} \frac{1}{k^2}
= x^2 \left(1 + \sum_{k = 2}^{\infty} \frac{1}{k^2} \right)
\leq 2 x^2 \leq 2x.
\end{align*}
A similar reasoning applies for $1 < x \leq 2$ and $2 < x < \infty$ and the proof is complete.
\end{proof}
%
\begin{Lemma}[Cesaro's Lemma] \label{wk7:lemma:Cesaro}
If $\lim_{n \to \infty} a_n = a$, then
\begin{align*}
\lim_{n \to \infty} \frac{1}{n} \sum_{k = 1}^{n} a_k = a.
\end{align*}
\end{Lemma}
\begin{proof}
Without loss of generality, we assume $a = 0$. For $k \leq n$, we have
\begin{align*}
&\left| \frac{1}{n} \sum_{i=1}^n a_i\right|
\leq \frac{1}{n} \left|\sum_{i=1}^k a_i\right| + \frac{n-k}{n} \sup_{j>k} |a_j|, \\
\implies
&\limsup_{n \to \infty}\frac{1}{n} \left|\sum_{i=1}^n a_i\right| \leq \limsup_{j \to \infty} |a_j| = 0.
\end{align*}
\end{proof}
%
\begin{Lemma}[Kronecker's Lemma] \label{wk7:lemma:Kronecker}
If $\displaystyle\sum_{k = 1}^{\infty} \frac{a_k}{k}$ converges, then
\begin{align*}
\lim_{n \to \infty} \frac{1}{n} \sum_{k = 1}^{n} a_k = 0.
\end{align*}
\end{Lemma}
%
\begin{proof}
Let $r_n = \displaystyle\sum_{i = n+1}^{\infty} \frac{a_i}{i}$. We have
\begin{align*}
\lim_{n \to \infty} r_n = 0.
\end{align*}
From Cesaro's lemma (\cref{wk7:lemma:Cesaro}), we have
\begin{align*}
\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} r_k = 0.
\end{align*}
Furthermore, for $k<n$, we have
\begin{align*}
r_k = \frac{a_{k+1}}{k+1} + \frac{a_{k+2}}{k+2} + \cdots + \frac{a_{n}}{n} + r_n.
\end{align*}
Therefore,
\begin{align*}
&\sum_{k=0}^{n-1} r_k = a_1 + \ldots + a_n + n r_n, \\
\implies
&\frac{1}{n} \sum_{k=1}^{n} a_k = -r_n + \frac{1}{n} \sum_{k=0}^{n-1} r_k.
\end{align*}
By using the above results, we obtain
\begin{align*}
\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} a_k = 0.
\end{align*}
\end{proof}
%
We are now ready to give Kolmogorov's proof of the SLLN. From \cref{wk7:lemma:var_mean_ineq}, we have
\begin{align*}
\sum_{k = 1}^{\infty} \E[\frac{1}{k^2} \left(\hat{X}_k - \E \hat{X}_k \right)^2] < \infty.
\end{align*}
From \cref{wk7:thm:var_conv_criteria}, we obtain
\begin{align*}
\sum_{k = 1}^{\infty} \frac{1}{k} \left(\hat{X}_k - \E \hat{X}_k \right) \text{ converges a.s.}
\end{align*}
From Kronecker's lemma (\cref{wk7:lemma:Kronecker}), we have
\begin{align}\label{avgconv}
\frac{1}{n} \sum_{k = 1}^{n} \left(\hat{X}_k - \E \hat{X}_k \right) \to 0 \ \text{a.s.}
\end{align}
Furthermore, using the DCT, we have
\begin{align}
&\lim_{k \to \infty} \E \hat{X}_k = \E[\lim_{k \to \infty} X_1 \indicatore{\{|X_1| \leq k\}}] = \E X_1 = 0, \\
\implies
&\frac{1}{n} \sum_{k = 1}^{n} \E \hat{X}_k \to 0 \ \text{a.s.}. \label{hatXExp}
\end{align}
Therefore, from \cref{avgconv}, we obtain
\begin{align*}
&\frac{1}{n} \sum_{k = 1}^{n} \hat{X}_k \to 0 \ \text{a.s.},
\end{align*}
and the SLLN is proved.
We now give a generalization of Kronecker's lemma, which will be useful later on.
\begin{Lemma}[Generalized Kronecker's Lemma]\label{wk7:Generalized_Kronecker}
Suppose $0< b_n \to \infty$ as $n\to\infty$. If $\displaystyle\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ converges in $\bbR$, then
\begin{align*}
\frac{1}{b_n} \sum_{k=1}^n a_k \to 0 \ \text{as $n \to \infty$}.
\end{align*}
\end{Lemma}
%
\begin{proof}
Without loss of generality, we can suppose that $b_n \in \bbZ_+$, $\forall n\geq1$. Let $b_0 = 0$, $s_0 = 0$ and
\begin{align*}
s_n &= \sum_{k=1}^n \frac{a_k}{b_k} \to s \in \bbR.
\end{align*}
It can be checked that
\begin{align*}
\frac{1}{b_n} \sum_{k=1}^n a_k
&= s_n - \frac{1}{b_n} \sum_{k=1}^n (b_k - b_{k-1}) s_{k-1} \to 0,
\end{align*}
since from Cesaro's lemma (note that $b_k - b_{k-1} \in \bbZ_+$ and $b_n=\sum_{k=1}^n (b_k - b_{k-1})$), we have
\begin{align*}
\lim_{n \to \infty} \frac{1}{b_n} \sum_{k=1}^n (b_k - b_{k-1}) s_{k-1} = s.
\end{align*}
\end{proof}
\begin{Theorem}[Generalized variance convergence criterion] Suppose $Y_k, k \geq 1$ are independent random variables, $\E Y_k = 0$, and $0< b_k \to \infty$ as $k\to\infty$. We have
\begin{align*}
\sum_{k=1}^{\infty} \frac{\var(Y_k)}{b_k^2} < \infty
\implies
\frac{1}{b_n} \sum_{k=1}^{\infty} Y_k \to 0 \ \text{a.s.}
\end{align*}
\end{Theorem}
\begin{proof}
Apply \cref{wk7:thm:var_conv_criteria} to $Y_k/b_k$ and the result follows from \cref{wk7:Generalized_Kronecker}.
\end{proof}
\section{The Third Proof: Etemadi's Use of Positivity}
In the third proof, we present the surprising and elegant proof of Etemadi discovered in 1981, some 50 years after Kolmogorov first proved the SLLN. This proof also strengthens the result to require only pairwise independence.
\begin{Theorem}[Etemadi's SLLN]
Suppose $X_i,\ i \geq 1$ are identically distributed and pairwise independent, and $\E X_i = \mu$. We have
\begin{align*}
\frac{S_n}{n} \to \mu \ \text{a.s. as $n\to\infty$}.
\end{align*}
\end{Theorem}
\begin{proof}
We first observe that $X_i = X_i^+ - X_i^-$ and
\begin{align*}
X_i \independent X_j \implies
X_i^+ \independent X_j^+,\ X_i^- \independent X_j^-.
\end{align*}
Therefore, we can without loss of generality assume $X_i \geq 0$. This turns out to be the key of Etemadi's proof. Let
\begin{align*}
\hat{X}_i &= X_i \indicatore{\{X_i \leq i\}}, \\
\hat{S}_n &= \sum_{i = 1}^n \hat{X}_i.
\end{align*}
As shown previously, it suffices to show that $\hat{S}_n/n \to \mu$ a.s. Let $\alpha \in (1, 2)$, and $j_n = \lfloor \alpha^n \rfloor$. We have
\begin{align*}
&1 \leq j_n \leq \alpha^n < j_{n+1} \leq 2 j_n, \\
\implies
&\frac{1}{j_n} \leq \frac{2}{\alpha^n}.
\end{align*}
For a fixed $i$, let $n_0 = \min \{n:\alpha^n \geq i\}$. We have
\begin{align}
\sum_{n: j_n \geq i} \frac{1}{j_n^2}
\leq \sum_{n: j_n \geq i} \frac{4}{\alpha^{2n}}
= 4 \sum_{k=0}^{\infty} \frac{1}{\alpha^{2k} \alpha^{2 n_0}}
\leq 4 \sum_{k=0}^{\infty} \frac{1}{i^2} \frac{1}{\alpha^{2k}}
= \frac{4}{i^2} \frac{1}{1 - \alpha^{-2}}. \label{ineq:sumjn}
\end{align}
For $\epsilon > 0$ and using Chebyshev's inequality together with pairwise independence, we have
\begin{align*}
\sum_{n=1}^{\infty} \P(\left| \hat{S}_{j_n} - \E \hat{S}_{j_n} \right| \geq \epsilon j_n)
&\leq \frac{1}{\epsilon^2} \sum_{n=1}^{\infty} \frac{1}{j_n^2} \var(\hat{S}_{j_n}) \\
&= \frac{1}{\epsilon^2} \sum_{n=1}^{\infty} \frac{1}{j_n^2} \sum_{i=1}^{j_n} \var(\hat{X}_i) \\
&= \frac{1}{\epsilon^2} \sum_{i=1}^{\infty} \var(\hat{X}_i) \sum_{n:j_n \geq i} \frac{1}{j_n^2} \\
&\leq \frac{4}{\epsilon^2} \frac{1}{1 - \alpha^{-2}} \sum_{i=1}^{\infty} \frac{\var(\hat{X}_i)}{i^2} \\
&\leq \frac{8}{\epsilon^2} \frac{1}{1 - \alpha^{-2}} \E |X_1| < \infty,
\end{align*}
where the penultimate inequality follows from \cref{ineq:sumjn}, and the last equality from \cref{wk7:lemma:var_mean_ineq}. From \cref{wk6:lemma:sum_P_finite_convto_0}, we obtain
\begin{align*}
\frac{\hat{S}_{j_n} - \E \hat{S}_{j_n}}{j_n} \to 0 \ \text{a.s.}
\end{align*}
Using the same argument as in \cref{hatXExp}, we have
\begin{align*}
\E \hat{X}_i \to \E X_i = \mu
\implies
\frac{\E \hat{S}_{j_n}}{j_n} \to \mu.
\end{align*}
Therefore, we obtain
\begin{align*}
\frac{\hat{S}_{j_n}}{j_n} \to \mu \ \text{a.s.}
\end{align*}
Finally, for any $n$, there exists $k$ such that
\begin{align*}
&j_k \leq n < j_{k+1},
\end{align*}
and because $\hat{X}_i \geq 0$ for all $i\geq 1$, we have a.s.,
\begin{align*}
&\hat{S}_{j_k} \leq \hat{S}_n \leq \hat{S}_{j_{k+1}}, \\
\implies
&\frac{j_k}{j_{k+1}} \frac{\hat{S}_{j_k}}{j_k} \leq \frac{\hat{S}_n}{n} \leq \frac{j_{k+1}}{j_k} \frac{\hat{S}_{j_{k+1}}}{j_{k+1}}, \\
\implies
&\lim_{n \to \infty} \frac{j_k}{j_{k+1}} \frac{\hat{S}_{j_k}}{j_k} \leq \liminf_{n \to \infty} \frac{\hat{S}_n}{n} \leq \limsup_{n \to \infty} \frac{\hat{S}_n}{n} \leq \lim_{n \to \infty} \frac{j_{k+1}}{j_k} \frac{\hat{S}_{j_{k+1}}}{j_{k+1}}, \\
\implies
&\frac{1}{\alpha} \mu \leq \liminf_{n \to \infty} \frac{\hat{S}_n}{n}\leq \limsup_{n \to \infty} \frac{\hat{S}_n}{n} \leq \alpha \mu.
\end{align*}
Taking $\alpha \to 1$, we obtain
\begin{align*}
\lim_{n \to \infty} \frac{\hat{S}_n}{n} &= \mu\ \text{a.s.}
\end{align*}
\end{proof}
%
%\bibliography{mybib}
\bibliographystyle{alpha}
\end{document}