forked from wptay/aipt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path9_Weak_Convergence.tex
357 lines (331 loc) · 15.1 KB
/
9_Weak_Convergence.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
\documentclass[12pt]{article}
\input{prob_preamble.tex}
\externaldocument{1_BasicRealAnalysis_I}
\externaldocument{3_ProbabilitySpaces}
\externaldocument{4_Random_Variables}
\externaldocument{5_Convergence_and_Independence}
\externaldocument{6_Borel_Cantelli_Lemmas}
\externaldocument{8_Glivenko-Cantelli_and_0-1_Laws}
\begin{document}
\handout{9}{Weak Convergence}
\section{Weak Convergence}
Let $\left(\Omega, d\right)$ be a metric space with probability measure $\P: \calB \mapsto \left[0, 1\right]$, where $\calB$ is the Borel $\sigma$-algebra. Since $\calB$ defines $\P$, one may want to define the convergence of a sequence of probability distributions $\P_n \to \P$ as $\P_n(B)\to\P(B)$ for all $B\in\calB$. However, this definition is too strong as can be seen from this example: Let $\delta_x$ be the probability measure with $\delta_x(\{x\})=1$. Then we desire that $\delta_{1/n} \to \delta_0$ but $\delta_{1/n}((0,1))=1$ and $\delta_0((0,1))=0$.
Let $C_b(\Omega)$ be the set of continuous and bounded functions $f: \Omega \mapsto \Real$.
\begin{Lemma}
$\P$ on $\left(\Omega, \calB\right)$ is uniquely determined by $\int_{\Omega} f \ud\P, \ f\in C_b(\Omega)$.
\end{Lemma}
\begin{proof}
We show that $\int_{\Omega} f \ud\P_1 = \int_{\Omega} f \ud\P_2$, $\forall f\in C_b(\Omega)$ $\implies \P_1 = \P_2$. For any open set $U \subset \Omega$, we have
\begin{align*}
d(\omega, U^c) =
\begin{cases}
0, & \text{if} \ \omega \in U^c, \\
> 0, & \text{if}\ \omega \in U.
\end{cases}
\end{align*}
Let
$f_m(\omega) = \min \big\{1, m d(\omega, U^c)\big\}\in C_b(\Omega)$. We have
\begin{align*}
\lim_{m \to \infty} f_m(\omega) = \indicatore{U}(\omega).
\end{align*}
From MCT, we obtain
\begin{align*}
&\lim_{m \to \infty} \int_{\Omega} f_m \ud\P_1
= \int_{\Omega} \lim_{m \to \infty} f_m \ud\P_1
= \int_{\Omega} \indicatore{U}(\omega) \ud\P_1(\omega)
= \P_1(U).
\end{align*}
Since
\begin{align*}
\int_{\Omega} f_m \ud\P_1 = \int_{\Omega} f_m \ud\P_2,
\end{align*}
$\P_1(U) = \P_2(U)$ for all open $U$. Since the open sets generate $\calB$ and $\{B\in\calB : \P_1(B)=\P_2(B)\}$ is a $\lambda$-system, the $\pi-\lambda$ theorem completes the proof.
\end{proof}
%
\begin{Definition}[Weak convergence or Convergence in distribution]\label{wk9:def:weak convergence}
We say that $\P_n \convd \P$ if
\begin{align*}
\int_{\Omega} f \ud\P_n \to \int_{\Omega} f \ud\P,\ \forall f \in C_b(\Omega).
\end{align*}
Similarly, we say that $X_n \convd X$ if $\P_{X_n} \convd \P_X$, i.e.,
\begin{align*}
\E f(X_n) = \int_{\Omega} f \ud\P_{X_n}
\to
\int_{\Omega} f \ud\P_X = \E f(X), \ \forall f \in C_b(\Omega).
\end{align*}
\end{Definition}
In the sequel, we restrict $\Omega = \bbR$. All results can be extended to $\bbR^k$ with trivial modifications. We denote $F(t) = \P({\left(\infty, t\right]})$ as the cdf of $\P$ and $F_n(t)$ as the cdf of $\P_n$.
%
\begin{Theorem} \label{wk9:thm:convd_iff_conv_in_cdf}
$\P_n \convd \P \iff F_n(t) \to F(t)$ for all continuity points $t$ of $F(\cdot)$.
\end{Theorem}
%
\begin{proof}
Let $\Phi$ be the set of continuity points of $F(t)$.
'$\Rightarrow$': Fix $\epsilon > 0$ and $t\in\Phi$. Let $\varphi_1(x)$ and $\varphi_2(x)$ be the continuous bounded functions shown in \cref{wk9:fig:varphi}, i.e.,
\begin{align*}
\varphi_i(x) =
\begin{cases}
1, &\ \text{if $x \leq t-\epsilon$},\\
\text{linear}, &\ \text{if $t-\epsilon < x \leq t$},\\
0, &\ \text{if $x>t$}.
\end{cases}
\end{align*}
The function $\varphi_2$ is defined similarly.
\begin{figure}[!htb]
\centering
\includegraphics[width=.3\textwidth]{approx_phi}
\caption{Approximation of $\indicatore{\left(-\infty, t\right]}(x)$.}\label{wk9:fig:varphi}
\end{figure}
Then we can approximate $\indicatore{\left(-\infty, t\right]}(x)$ as
\begin{align*}
\indicatore{\left(-\infty, t - \epsilon\right]}(x)
\leq \varphi_1(x)
\leq \indicatore{\left(-\infty, t\right]}(x)
\leq \varphi_2(x)
\leq \indicatore{\left(-\infty, t + \epsilon\right]}(x).
\end{align*}
By taking the expectation of the above inequality, we obtain
\begin{align*}
F(t - \epsilon)
& \leq \int \varphi_1 \ud\P \\
&= \lim_{n \to \infty} \int \varphi_1 \ud\P_n \\
& \leq \liminf_{n \to \infty} F_n(t) \\
& \leq \limsup_{n \to \infty} F_n(t) \\
& \leq \lim_{n \to \infty} \int \varphi_2 \ud\P_n \\
& = \int \varphi_2 \ud\P \\
& \leq F(t + \epsilon).
\end{align*}
By taking $\epsilon \to 0$, since $t\in\Phi$, we have
\begin{align*}
\lim_{n \to \infty} F_n(t) = F(t).
\end{align*}
%
\begin{Remark}
Similar proof steps as above hold if $C_b(\bbR)$ is replaced with $C_b^k(\bbR)$, the set of $k$-differentiable bounded functions for $k\geq1$.
\end{Remark}
'$\Leftarrow$': We first show that $\bbR \setminus \Phi$ (the set of discontinuity points) is countable. Suppose $x \in \bbR \setminus \Phi$. Let
\begin{align*}
a(x) &= \sup \{F(y) : y < x \}, \\
b(x) &= \inf \{F(y) : y > x \}.
\end{align*}
Because the set of rational numbers $\bbQ$ is dense in $\bbR$, $\exists r_x \in (a(x), b(x)), \ \st r_x \in \bbQ$. Since the intervals $(a(x),b(x))$ are disjoint for all $x\in\Real\setminus\Phi$, the mapping $x \mapsto r_x$ is one-to-one. Therefore, $\Real\setminus\Phi$ is countable and the claim is proved. This implies that $\Phi$ is dense.
Note that $\P({\left(-a, a\right]^c}) = F(-a) + 1 - F(a)$. We then have $\forall \epsilon > 0$,
\begin{align*}
\exists \pm M(\epsilon)\in \Phi, \ \st\ \P({\left(-M(\epsilon), M(\epsilon)\right]^c}) \leq \epsilon.
\end{align*}
Furthermore, we have
\begin{align*}
F_n(M(\epsilon)) &\to F(M(\epsilon)), \\
F_n(-M(\epsilon)) &\to F(-M(\epsilon)).
\end{align*}
Therefore, $\forall n$ sufficiently large, $\P_n \left({\left(-M(\epsilon), M(\epsilon)\right]^c}\right) \leq 2 \epsilon$. Choose $-M(\epsilon) = x_1^k \leq x_2^k \leq \ldots \leq x_k^k = M(\epsilon), \ x_i^k \in \Phi$ such that $\lim_{k \to \infty} \max|x_{i+1}^k - x_i^k| = 0$. For $f\in C_b(\Real)$, let
\begin{align*}
f_k(x)
= \sum_{1 < i \leq k} f(x_i^k) \indicatore{\left( x_{i-1}^k, x_i^k\right]}(x) \in C_b(\Real).
\end{align*}
Taking the expectation over $\P_n$, we obtain
\begin{align}
\int f_k \ud\P_n
&= \sum_{1 < i \leq k} f(x_i^k) \left(F_n(x_i^k) - F_n(x_{i-1}^k)\right) \nn
\xrightarrow{n\to\infty}& \sum_{1 < i \leq k} f(x_i^k) \left(F(x_i^k) - F(x_{i-1}^k)\right) \nn
&= \int f_k \ud\P. \label{wk9:convd_if_conv_in_cdf_1}
\end{align}
Let
\begin{align*}
\eta_k(M(\epsilon)) = \sup_{|x| \leq M(\epsilon)} \left| f_k(x) - f(x) \right|.
\end{align*}
Since $f \in C_b(\bbR)$ is continuous, it is uniformly continuous on $[-M(\epsilon),M(\epsilon)]$ and we have $\lim_{k \to \infty} \eta_k(M(\epsilon)) = 0$. We have
\begin{align}
\left| \int f \ud\P - \int f_k \ud\P\right|
&\leq 2\norm{f}_{\infty} \P \left({\left(-M(\epsilon), M(\epsilon)\right]^c}\right) + \eta_k(M(\epsilon))\nn
&\leq 2\norm{f}_{\infty} \epsilon + \eta_k(M(\epsilon)), \label{wk9:convd_if_conv_in_cdf_2}
\end{align}
and for $n$ large,
\begin{align}
\left| \int f \ud\P_n - \int f_k \ud\P_n\right|
&\leq 2\norm{f}_{\infty} \P_n \left({\left(-M(\epsilon), M(\epsilon)\right]^c}\right) + \eta_k(M(\epsilon))\nn
&\leq 2 \norm{f}_{\infty} \epsilon + \eta_k(M(\epsilon)). \label{wk9:convd_if_conv_in_cdf_3}
\end{align}
From \cref{wk9:convd_if_conv_in_cdf_1,wk9:convd_if_conv_in_cdf_2,wk9:convd_if_conv_in_cdf_3}, we therefore obtain
\begin{align*}
& \left| \int f \ud\P_n - \int f \ud\P \right| \\
\leq & \left| \int f \ud\P_n - \int f_k \ud\P_n \right| +
\left| \int f_k \ud\P_n - \int f_k \ud\P \right| +
\left| \int f_k \ud\P - \int f \ud\P \right| \to 0,
\end{align*}
as $n\to\infty$, then $k\to\infty$ and finally $\epsilon\to0$.
\end{proof}
%
\begin{Lemma}
If $\P_n \convd \P$, g is a continuous mapping, then
\begin{align*}
& \P_n \circ g^{-1} \convd \P_n \circ g^{-1},
\end{align*}
or in other words,
\begin{align*}
& X_n \convd X \implies g(X_n) \convd g(X).
\end{align*}
\end{Lemma}
\begin{proof}
Since $f \in C_b(\bbR) \implies f \circ g \in C_b(\bbR)$, the result follows.
\end{proof}
\begin{Lemma}
If $\P_n \convd \P$, then $\exists$ r.v.s $Y_n \sim$ cdf $F_n$, $Y \sim$ cdf $F$, $\st\ Y_n \to Y$ a.s.
\end{Lemma}
%
\begin{proof}
From \cref{wk8:lemma:inverse_function_2}, we know that, for the probability space $\left( (0, 1), \calB (0, 1), \lambda \right)$, where $\lambda$ is Lebesgue measure, we have r.v.s
\begin{align*}
F_n^{-1}(\omega) &= \inf \big\{y: F_n(y) \geq \omega\big\} \sim \text{cdf}\ F_n, \\
F^{-1}(\omega) &= \inf \big\{y: F(y) \geq \omega\big\} \sim \text{cdf}\ F.
\end{align*}
Let $\Omega_0$ be the set of continuity points of $F^{-1}$. A similar argument as that in the proof of \cref{wk9:thm:convd_iff_conv_in_cdf} shows that $\Omega_0^c$ is countable, hence $\lambda(\Omega_0)=1$. In the following, we show that $F_n^{-1}(\omega) \to F^{-1}(\omega)$ for all $\omega\in\Omega_0$.
For any continuity point $y$ of $F$ such that $y < F^{-1}(\omega)$, we have $F(y) < \omega$ (cf.\ Week 8), hence for all $n$ sufficiently large, $F_n(y) < \omega$ since $F_n(y)\to F(y)$ from \cref{wk9:thm:convd_iff_conv_in_cdf}. Thus, $F_n^{-1}(\omega) \geq y$ and $\liminf_{n\to\infty}F_n^{-1}(\omega) \geq F^{-1}(\omega)$ by taking $y\to F^{-1}(\omega)$ (note that set of continuity points of $F$ is dense).
For any continuity point $y$ of $F$ such that $y > F^{-1}(\omega)$, $F(y) > \omega$ since $\omega\in\Omega_0$ (cf.\ Week 8), hence for all $n$ sufficiently large, $F_n(y) > \omega$. Thus, $F_n^{-1}(\omega) \leq y$ and $\limsup_{n\to\infty}F_n^{-1}(\omega) \leq F^{-1}(\omega)$.
\end{proof}
%
\begin{Lemma} \label{wk9:lemma:subseq_convd_implies_seq_convd}
If for any subsequence $\left(n(k)\right)_{k \geq 1}$, \ $\exists$ subsubsequence $\left(n(k(r))\right)_{r \geq 1}\ \st\ \P_{n(k(r))} \convd \P$, then
\begin{align*}
\P_n \convd \P.
\end{align*}
\end{Lemma}
\begin{proof}
Suppose otherwise. Then $\exists f \in C_b(\bbR), \epsilon > 0,$ sequence $\left(n(k)\right)_{k \geq 1}$, such that
\begin{align*}
\left| \int f \ud \P_{n(k)} - \int f \ud \P \right| > \epsilon,
\end{align*}
for all $k\geq1$. Then, any subsequence of distributions indexed by $(n(k(r)))_{r\geq 1}$ cannot converge, a contradiction.
\end{proof}
\begin{Lemma}\label{wk9:lem:convpd}
$X_n \convp X \implies X_n \convd X$.
\end{Lemma}
\begin{proof}
From \cref{wk6:cor:convp_implies_conv_as}, for any sequence $\left(n(k)\right)_{k \geq 1}$, $\exists$ subsequence $\left(n(k(r))\right)_{r \geq 1}, \st\ X_{n(k(r))} \to X \ \text{a.s}$. Let $f \in C_b(\bbR)$. By DCT, we obtain
\begin{align*}
&\lim_{r \to \infty} \E[f(X_{n(k(r))})]
= \E[\lim_{r \to \infty} f(X_{n(k(r))})]
= \E[f(X)],
\end{align*}
Therefore, $X_{n(k(r))} \convd X$. From \cref{wk9:lemma:subseq_convd_implies_seq_convd}, we have $X_n \convd X$.
\end{proof}
In general, we can prove $\P_n \convd \P$ in two steps:
\begin{enumerate}[(i)]
\item Show that for all sequences $\left(n(k)\right)_{k \geq 1}$, \ $\exists \left(n(k(r))\right)_{r \geq 1}$, \ $\st\ \P_{n(k(r))}$ converges. This is done using the concept of uniform tightness, which we discuss below.
\item Show that all subsequential distribution limits above are the same $\P$. This is done through the use of characteristic functions, which we discuss next week.
\end{enumerate}
\section{Uniform Tightness}
\begin{Definition}[Uniform tightness]
$(\P_n)_{n \geq 1}$ is uniformly tight if $\forall \epsilon > 0$, $\exists \text{compact}\ K \subset\ \bbR$ such that
\begin{align*}
\P_n(K) \geq 1 - \epsilon, \ \forall n \geq 1.
\end{align*}
\end{Definition}
%
\begin{Theorem}[Helly's selection theorem]\label{wk9:thm:Helly}
If $(\P)_{n \geq 1}$ is uniformly tight, then $\exists \left(n(k)\right)_{k \geq 1}$ such that
\begin{align*}
\P_{n(k)} \convd \P, \ \text{for some}\ \P.
\end{align*}
\end{Theorem}
\begin{Lemma}[Cantor's Diagonalization] \label{wk9:lemma:Cantor_diag}
Suppose $A$ is a countable set, and $f_n:A \mapsto \bbR$. Then, $\exists \left(n(k)\right)_{k \geq 1}$, $\st\ f_{n(k)}(a)$ converges (or goes to $\pm \infty$), $\forall a \in A$.
\end{Lemma}
\begin{proof}
Let $A = \{a_1, a_2, \ldots\}$. From \cref{lem:mono_sub}, we have
\begin{align*}
& \exists \left(n_1(k)\right)_{k \geq 1}, \ \st\ f_{n_1(k)}(a_1)\ \text{converges}, \\
& \exists \left(n_2(k)\right)_{k \geq 1} \subset \left(n_1(k)\right)_{k \geq 1}, \ \st\ f_{n_2(k)}(a_2)\ \text{converges}, \\
& \ldots
\end{align*}
Therefore, for the diagonal sequence $\left(n_k(k)\right)_{k \geq 1}$, $f_{n_{k}(k)}(a_{l})$ converges $\forall l$.
\end{proof}
\begin{proof}[Proof of \cref{wk9:thm:Helly}]
Since $\bbQ$ is a dense subset of $\bbR$ and countable, by \cref{wk9:lemma:Cantor_diag}, $\exists \left(n(k)\right)_{k \geq 1}$,
\begin{align*}
\st\ F_{n(k)}(q) \to F(q), \forall q \in \bbQ.
\end{align*}
Now we extend the definition of $F$ on $\bbQ$ to $\bbR$ by defining $F(x) = \inf \big\{F(q): x < q, q \in \bbQ\big\}$. We prove that $F(x)$ is a cdf.
\begin{itemize}
\item It is obvious $F(x)$ is a non-decreasing function.
\item It is right-continuous because
\begin{align*}
\lim_{x_n \downarrow x} F(x_n)
&= \lim_{n \to \infty} \inf\left\{F(q) : x_n < q \in \bbQ\right\} \\
&= \inf_{n \geq 1} \inf\left\{F(q) : x_n < q \in \bbQ\right\} \\
&= \inf \left\{F(q) : x < q \in \bbQ\right\} \\
&= F(x),
\end{align*}
where the second equality follows because $\inf\left\{F(q) : x_n < q \in \bbQ\right\}$ is a decreasing sequence for $x_n\downarrow x$.
\item Since $(\P_n)_{n \geq 1}$ is uniformly tight, $\forall \epsilon > 0, \ \exists [-M, M]$,
\begin{align*}
\st\ 1 - F_n(M) + F_n(-M) \leq \epsilon, \ \forall n.
\end{align*}
Choose $r < -M < M < s$, $r, s \in \bbQ$. We have
\begin{align*}
&1 - F(s) + F(r)
= \lim_{k \to \infty} \left(1 - F_{n(k)}(s) + F_{n(k)}(r)\right)
\leq \epsilon,
\end{align*}
which implies
\begin{align*}
&\lim_{x \to -\infty}F(x) = 0, \\
&\lim_{x \to \infty}F(x) = 1.
\end{align*}
\end{itemize}
Therefore, $F(x)$ is a cdf.
Let $x$ be a continuity point of $F$ and $a, b \in \bbQ, \ \st a < x < b$. We have
\begin{align*}
F(a)
= \lim_{k \to \infty} F_{n(k)}(a)
\leq \liminf_{k \to \infty} F_{n(k)}(x)
\leq \limsup_{k \to \infty} F_{n(k)}(x)
\leq \lim_{k \to \infty} F_{n(k)}(b)
= F(b).
\end{align*}
Taking $a\uparrow x$ and $b\downarrow x$, we obtain
\begin{align*}
&\lim_{k \to \infty} F_{n(k)}(x) = F(x).
\end{align*}
From \cref{wk9:thm:convd_iff_conv_in_cdf}, we have
\begin{align*}
\P_{n(k)} \convd \P.
\end{align*}
\end{proof}
%
\begin{Lemma}\label{wk9:lem:convd_implies_uniform_tightness}
If $\P_n \convd \P$, then $(\P_n)_{n \geq 1}$ is uniformly tight.
\end{Lemma}
%
\begin{proof}
Let $\epsilon > 0$. Choose $M > 0, \ \st\ \P({[-M, M]^c}) \leq \epsilon$.
Let
\begin{align*}
f(x) =
\begin{cases}
0, & \text{if}\ |x| \leq M, \\
\text{linear}, & \text{if}\ M < x < 2M, \text{or} -2M < x < -M, \\
1, & \text{if}\ |x| \geq 2M.
\end{cases}
\end{align*}
Note that $f \in C_b(\bbR)$. We have
\begin{align*}
\limsup_{n \to \infty} \P_n(\left[ -2M, 2M \right]^c)
\leq \limsup_{n \to \infty} \int f(x) \ud\P_n(x)
= \int f(x) \ud\P(x)
\leq \P(\left[ -M, M \right]^c)
\leq \epsilon.
\end{align*}
Therefore, $\exists n_0, \ \st \forall n \geq n_0, \P_n(\left[ -2M, 2M \right]^c) \leq 2\epsilon$.
For each $n < n_0$, we choose $M_n$ such that
\begin{align*}
\P_n(\left[ -M_n, M_n \right]^c) \leq 2\epsilon.
\end{align*}
Let $M^* = \max \{M_1, M_2, \ldots, M_{n-1}, 2M\}$. We then have $\P_n(\left[ -M^*, M^* \right]^c) \leq 2\epsilon, \forall n \geq 1$.
\end{proof}
%
%
%\bibliography{mybib}
\bibliographystyle{alpha}
\end{document}