-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy path0480-sliding-window-median.js
47 lines (44 loc) · 1.89 KB
/
0480-sliding-window-median.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
/**
* 480. Sliding Window Median
* https://leetcode.com/problems/sliding-window-median/
* Difficulty: Hard
*
* The median is the middle value in an ordered integer list. If the size of the list is even,
* there is no middle value. So the median is the mean of the two middle values.
*
* - For examples, if arr = [2,3,4], the median is 3.
* - For examples, if arr = [1,2,3,4], the median is (2 + 3) / 2 = 2.5.
*
* You are given an integer array nums and an integer k. There is a sliding window of size k
* which is moving from the very left of the array to the very right. You can only see the k
* numbers in the window. Each time the sliding window moves right by one position.
*
* Return the median array for each window in the original array. Answers within 10-5 of the
* actual value will be accepted.
*/
/**
* @param {number[]} nums
* @param {number} k
* @return {number[]}
*/
var medianSlidingWindow = function(nums, k) {
const maxHeap = new MaxPriorityQueue();
const minHeap = new MinPriorityQueue();
const result = [];
const map = {};
for (let i = 0; i < k; i++) maxHeap.enqueue(nums[i]);
for (let i = 0; i < k >> 1; i++) minHeap.enqueue(maxHeap.dequeue());
for (let i = k; i <= nums.length; i++) {
result.push(k & 1 ? maxHeap.front() : (maxHeap.front() + minHeap.front()) / 2);
if (i === nums.length) break;
map[nums[i - k]] = (map[nums[i - k]] || 0) + 1;
const balance = (nums[i - k] <= maxHeap.front() ? -1 : 1)
+ (nums[i] <= maxHeap.front() ? 1 : -1);
nums[i] <= maxHeap.front() ? maxHeap.enqueue(nums[i]) : minHeap.enqueue(nums[i]);
balance < 0 && minHeap.size() && maxHeap.enqueue(minHeap.dequeue());
balance > 0 && maxHeap.size() && minHeap.enqueue(maxHeap.dequeue());
while (maxHeap.size() && map[maxHeap.front()]) map[maxHeap.dequeue()]--;
while (minHeap.size() && map[minHeap.front()]) map[minHeap.dequeue()]--;
}
return result;
};