-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy path0764-largest-plus-sign.js
58 lines (52 loc) · 1.88 KB
/
0764-largest-plus-sign.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
/**
* 764. Largest Plus Sign
* https://leetcode.com/problems/largest-plus-sign/
* Difficulty: Medium
*
* You are given an integer n. You have an n x n binary grid grid with all values initially
* 1's except for some indices given in the array mines. The ith element of the array mines
* is defined as mines[i] = [xi, yi] where grid[xi][yi] == 0.
*
* Return the order of the largest axis-aligned plus sign of 1's contained in grid. If
* there is none, return 0.
*
* An axis-aligned plus sign of 1's of order k has some center grid[r][c] == 1 along with four
* arms of length k - 1 going up, down, left, and right, and made of 1's. Note that there could
* be 0's or 1's beyond the arms of the plus sign, only the relevant area of the plus sign is
* checked for 1's.
*/
/**
* @param {number} n
* @param {number[][]} mines
* @return {number}
*/
function orderOfLargestPlusSign(n, mines) {
const grid = Array(n).fill().map(() => Array(n).fill(1));
mines.forEach(([x, y]) => grid[x][y] = 0);
const left = Array(n).fill().map(() => Array(n).fill(0));
const right = Array(n).fill().map(() => Array(n).fill(0));
const up = Array(n).fill().map(() => Array(n).fill(0));
const down = Array(n).fill().map(() => Array(n).fill(0));
for (let i = 0; i < n; i++) {
for (let j = 0; j < n; j++) {
left[i][j] = grid[i][j] ? (j > 0 ? left[i][j-1] + 1 : 1) : 0;
up[i][j] = grid[i][j] ? (i > 0 ? up[i-1][j] + 1 : 1) : 0;
}
}
for (let i = n - 1; i >= 0; i--) {
for (let j = n - 1; j >= 0; j--) {
right[i][j] = grid[i][j] ? (j < n-1 ? right[i][j+1] + 1 : 1) : 0;
down[i][j] = grid[i][j] ? (i < n-1 ? down[i+1][j] + 1 : 1) : 0;
}
}
let maxOrder = 0;
for (let i = 0; i < n; i++) {
for (let j = 0; j < n; j++) {
maxOrder = Math.max(
maxOrder,
Math.min(left[i][j], right[i][j], up[i][j], down[i][j])
);
}
}
return maxOrder;
}