-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy path0882-reachable-nodes-in-subdivided-graph.js
86 lines (76 loc) · 2.51 KB
/
0882-reachable-nodes-in-subdivided-graph.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
/**
* 882. Reachable Nodes In Subdivided Graph
* https://leetcode.com/problems/reachable-nodes-in-subdivided-graph/
* Difficulty: Hard
*
* You are given an undirected graph (the "original graph") with n nodes labeled from 0 to n - 1.
* You decide to subdivide each edge in the graph into a chain of nodes, with the number of new
* nodes varying between each edge.
*
* The graph is given as a 2D array of edges where edges[i] = [ui, vi, cnti] indicates that there
* is an edge between nodes ui and vi in the original graph, and cnti is the total number of new
* nodes that you will subdivide the edge into. Note that cnti == 0 means you will not subdivide
* the edge.
*
* To subdivide the edge [ui, vi], replace it with (cnti + 1) new edges and cnti new nodes. The
* new nodes are x1, x2, ..., xcnti, and the new edges are [ui, x1], [x1, x2], [x2, x3], ...,
* [xcnti-1, xcnti], [xcnti, vi].
*
* In this new graph, you want to know how many nodes are reachable from the node 0, where a node
* is reachable if the distance is maxMoves or less.
*
* Given the original graph and maxMoves, return the number of nodes that are reachable from node
* 0 in the new graph.
*/
/**
* @param {number[][]} edges
* @param {number} maxMoves
* @param {number} n
* @return {number}
*/
var reachableNodes = function(edges, maxMoves, n) {
const graph = {};
for (let i = 0; i < n; i++) {
graph[i] = [];
}
for (const [u, v, w] of edges) {
graph[u].push([v, w]);
graph[v].push([u, w]);
}
const dist = {};
for (let i = 0; i < n; i++) {
dist[i] = Infinity;
}
dist[0] = 0;
const used = {};
const pq = [[0, 0]];
while (pq.length) {
pq.sort((a, b) => a[0] - b[0]);
const [d, node] = pq.shift();
if (d > dist[node]) continue;
for (const [nei, weight] of graph[node]) {
const edgeId = `${Math.min(node, nei)}-${Math.max(node, nei)}`;
const dirId = node < nei ? 0 : 1;
if (!used[edgeId]) {
used[edgeId] = [0, 0];
}
used[edgeId][dirId] = Math.min(maxMoves - d, weight);
if (d + weight + 1 <= maxMoves && d + weight + 1 < dist[nei]) {
dist[nei] = d + weight + 1;
pq.push([dist[nei], nei]);
}
}
}
let result = 0;
for (let i = 0; i < n; i++) {
if (dist[i] <= maxMoves) result++;
}
for (const [u, v, cnt] of edges) {
const edgeId = `${Math.min(u, v)}-${Math.max(u, v)}`;
if (used[edgeId]) {
const totalUsed = used[edgeId][0] + used[edgeId][1];
result += Math.min(cnt, totalUsed);
}
}
return result;
};