Skip to content

Commit 3eb3fd1

Browse files
authored
Add CI workflow (#19)
* Add CI workflow * Add badge * Add codecov badge
1 parent c974d02 commit 3eb3fd1

File tree

2 files changed

+44
-0
lines changed

2 files changed

+44
-0
lines changed

.github/workflows/CI.yml

Lines changed: 41 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,41 @@
1+
name: CI
2+
on:
3+
- push
4+
- pull_request
5+
jobs:
6+
test:
7+
name: Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }}
8+
runs-on: ${{ matrix.os }}
9+
strategy:
10+
fail-fast: false
11+
matrix:
12+
version:
13+
- '1.0'
14+
- '1.6'
15+
- 'nightly'
16+
os:
17+
- ubuntu-latest
18+
arch:
19+
- x64
20+
steps:
21+
- uses: actions/checkout@v2
22+
- uses: julia-actions/setup-julia@v1
23+
with:
24+
version: ${{ matrix.version }}
25+
arch: ${{ matrix.arch }}
26+
- uses: actions/cache@v1
27+
env:
28+
cache-name: cache-artifacts
29+
with:
30+
path: ~/.julia/artifacts
31+
key: ${{ runner.os }}-test-${{ env.cache-name }}-${{ hashFiles('**/Project.toml') }}
32+
restore-keys: |
33+
${{ runner.os }}-test-${{ env.cache-name }}-
34+
${{ runner.os }}-test-
35+
${{ runner.os }}-
36+
- uses: julia-actions/julia-buildpkg@v1
37+
- uses: julia-actions/julia-runtest@v1
38+
- uses: julia-actions/julia-processcoverage@v1
39+
- uses: codecov/codecov-action@v1
40+
with:
41+
file: lcov.info

README.md

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,8 @@
11
# AbstractDifferentiation
22

3+
[![CI](https://github.com/JuliaDiff/AbstractDifferentiation.jl/workflows/CI/badge.svg?branch=master)](https://github.com/JuliaDiff/AbstractDifferentiation.jl/actions?query=workflow%3ACI)
4+
[![Coverage](https://codecov.io/gh/JuliaDiff/AbstractDifferentiation.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaDiff/AbstractDifferentiation.jl)
5+
36
## Motivation
47

58
This is a package that implements an abstract interface for differentiation in Julia. This is particularly useful for implementing abstract algorithms requiring derivatives, gradients, jacobians, Hessians or multiple of those without depending on specific automatic differentiation packages' user interfaces.

0 commit comments

Comments
 (0)