diff --git a/Project.toml b/Project.toml index c7b947d2..d607919a 100644 --- a/Project.toml +++ b/Project.toml @@ -9,6 +9,7 @@ ColorVectorSpace = "c3611d14-8923-5661-9e6a-0046d554d3a4" FileIO = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549" Graphics = "a2bd30eb-e257-5431-a919-1863eab51364" ImageAxes = "2803e5a7-5153-5ecf-9a86-9b4c37f5f5ac" +ImageContrastAdjustment = "f332f351-ec65-5f6a-b3d1-319c6670881a" ImageCore = "a09fc81d-aa75-5fe9-8630-4744c3626534" ImageDistances = "51556ac3-7006-55f5-8cb3-34580c88182d" ImageFiltering = "6a3955dd-da59-5b1f-98d4-e7296123deb5" @@ -34,6 +35,7 @@ FileIO = "1" Graphics = "0.4, 1.0" ImageAxes = "0.6" ImageCore = "0.8.1" +ImageContrastAdjustment = "0.3.1" ImageDistances = "0.2.5" ImageFiltering = "0.6" ImageMetadata = "0.6, 0.7, 0.8, 0.9" diff --git a/src/Images.jl b/src/Images.jl index d33736ba..cf03e4c8 100644 --- a/src/Images.jl +++ b/src/Images.jl @@ -53,6 +53,7 @@ const is_little_endian = ENDIAN_BOM == 0x04030201 @reexport using ImageFiltering @reexport using ImageMorphology @reexport using ImageDistances +@reexport using ImageContrastAdjustment # Both ImageMetadata v0.9.0 and ImageAxes v0.6.0 deprecate the symbol data and # this causes a name conflict diff --git a/src/exposure.jl b/src/exposure.jl index 1c1ffde1..5d602a26 100644 --- a/src/exposure.jl +++ b/src/exposure.jl @@ -1,3 +1,18 @@ +### Deprecation warnings in view of functionality in ImageContrastAdjustment.jl +# supplanting all the functionality in exposure.jl + +Base.depwarn("`imhist` will be removed in a future release, please use `build_histogram` instead.", :imhist) +Base.depwarn("`imadjustintensity` will be removed in a future release, please use `adjust_histogram(img, LinearStretching())` instead.", :imadjustintensity) +Base.depwarn("`imstretch` will be removed in a future release, please use `adjust_histogram(img, ContrastStretching())` instead.", :imstretch) +Base.depwarn("`histeq` will be removed in a future release, please use `adjust_histogram(img, Equalization())` instead.", :histeq) +Base.depwarn("`adjust_gamma` will be removed in a future release, please use `adjust_histogram(img, GammaCorrection())` instead.", :adjust_gamma) +Base.depwarn("`histmatch` will be removed in a future release, please use `adjust_histogram(img, Matching())` instead.", :histmatch) +Base.depwarn("`clahe` will be removed in a future release, please use `adjust_histogram(img, AdaptiveEqualization())` instead.", :clahe) +Base.depwarn("`cliphist` will be removed in a future release.", :cliphist) + + + + """ `imadjustintensity(img [, (minval,maxval)]) -> Image` @@ -180,181 +195,6 @@ function imhist(img::AbstractArray, edges::AbstractRange) end -function partition_interval(nbins::Integer, minval::Real, maxval::Real) - edges = (range(0,step=(maxval - minval) / nbins,length=nbins)) .+ minval -end - -function partition_interval(nbins::Integer, minval::AbstractGray, maxval::AbstractGray) - partition_interval(nbins, minval.val, maxval.val) -end - -""" -``` -edges, count = build_histogram(img, nbins) -edges, count = build_histogram(img, nbins, minval, maxval) -edges, count = build_histogram(img, edges) -``` - -Generates a histogram for the image over `nbins` spread between `[minval, maxval]`. -Color images are automatically converted to grayscale. - -# Output -Returns `edges` which is a [`range`](@ref) type that specifies how the interval -`[minval, maxval]` is divided into bins, and an array `count` which records the -concomitant bin frequencies. In particular, `count` has the following -properties: - -* `count[0]` is the number satisfying `x < edges[1]` -* `count[i]` is the number of values `x` that satisfy `edges[i] <= x < edges[i+1]` -* `count[end]` is the number satisfying `x >= edges[end]`. -* `length(count) == length(edges)+1`. - -# Details - -One can consider a histogram as a piecewise-constant model of a probability -density function ``f`` [1]. Suppose that ``f`` has support on some interval ``I = -[a,b]``. Let ``m`` be an integer and ``a = a_1 < a_2 < \\ldots < a_m < a_{m+1} = -b`` a sequence of real numbers. Construct a sequence of intervals - -```math -I_1 = [a_1,a_2], I_2 = (a_2, a_3], \\ldots, I_{m} = (a_m,a_{m+1}] -``` - -which partition ``I`` into subsets ``I_j`` ``(j = 1, \\ldots, m)`` on which -``f`` is constant. These subsets satisfy ``I_i \\cap I_j = \\emptyset, \\forall -i \\neq j``, and are commonly referred to as *bins*. Together they encompass the -entire range of data values such that ``\\sum_j |I_j | = | I |``. Each bin has -width ``w_j = |I_j| = a_{j+1} - a_j`` and height ``h_j`` which is the constant -probability density over the region of the bin. Integrating the constant -probability density over the width of the bin ``w_j`` yields a probability mass -of ``\\pi_j = h_j w_j`` for the bin. - -For a sample ``x_1, x_2, \\ldots, x_N``, let - - -```math -n_j = \\sum_{n = 1}^{N}\\mathbf{1}_{(I_j)}(x_n), -\\quad \\text{where} \\quad -\\mathbf{1}_{(I_j)}(x) = -\\begin{cases} - 1 & \\text{if} x \\in I_j,\\\\ - 0 & \\text{otherwise}, -\\end{cases}, -``` -represents the number of samples falling into the interval ``I_j``. An estimate -for the probability mass of the ``j``th bin is given by the relative frequency -``\\hat{\\pi} = \\frac{n_j}{N}``, and the histogram estimator of the probability -density function is defined as -```math -\\begin{aligned} -\\hat{f}_n(x) & = \\sum_{j = 1}^{m}\\frac{n_j}{Nw_j} \\mathbf{1}_{(I_j)}(x) \\\\ -& = \\sum_{j = 1}^{m}\\frac{\\hat{\\pi}_j}{w_j} \\mathbf{1}_{(I_j)}(x) \\\\ -& = \\sum_{j = 1}^{m}\\hat{h}_j \\mathbf{1}_{(I_j)}(x). -\\end{aligned} -``` - -The function ``\\hat{f}_n(x)`` is a genuine density estimator because ``\\hat{f}_n(x) \\ge 0`` and -```math -\\begin{aligned} -\\int_{-\\infty}^{\\infty}\\hat{f}_n(x) \\operatorname{d}x & = \\sum_{j=1}^{m} \\frac{n_j}{Nw_j} w_j \\\\ -& = 1. -\\end{aligned} -``` - -# Options -Various options for the parameters of this function are described in more detail -below. - -## Choices for `nbins` -You can specify the number of discrete bins for the histogram. When specifying -the number of bins consider the maximum number of greylevels that your image -type supports. For example, with an image of type `N0f8` there is a maximum -of 256 possible graylevels. Hence, if you request more than 256 bins for -that type of image you should expect to obtain zero counts for numerous bins. - - -## Choices for `minval` -You have the option to specify the lower bound of the interval over which the -histogram will be computed. If `minval` is not specified then the minimum -value present in the image is taken as the lower bound. - -## Choices for `maxval` -You have the option to specify the upper bound of the interval over which the -histogram will be computed. If `maxval` is not specified then the maximum -value present in the image is taken as the upper bound. - -## Choices for `edges` -If you do not designate the number of bins, nor the lower or upper bound of the -interval, then you have the option to directly stipulate how the intervals will -be divided by specifying a [`range`](@ref) type. - -# Example - -Compute the histogram of a grayscale image. -```julia - -using TestImages, FileIO, ImageView - -img = testimage("mandril_gray"); -edges, counts = build_histogram(img,256,0,1) -``` - -Given a color image, compute the histogram of the red channel. -```julia -img = testimage("mandrill") -r = red.(img) -edges, counts = build_histogram(r,256,0,1) -``` - -# References -[1] E. Herrholz, "Parsimonious Histograms," Ph.D. dissertation, Inst. of Math. and Comp. Sci., University of Greifswald, Greifswald, Germany, 2011. - -See also: - -| Histogram Equalization | Histogram Matching | -|:--------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------:| -| [`adjust_histogram`](@ref adjust_histogram(::Equalization, ::AbstractArray, ::Integer, ::Union{Real,AbstractGray}, ::Union{Real,AbstractGray})) | [`adjust_histogram`](@ref adjust_histogram(::Matching, ::AbstractArray, ::AbstractArray, ::Integer)) | -| [`adjust_histogram!`](@ref adjust_histogram!(::Equalization, ::AbstractArray, ::Integer, ::Union{Real,AbstractGray}, ::Union{Real,AbstractGray})) | [`adjust_histogram!`](@ref adjust_histogram!(::Matching, ::AbstractArray, ::AbstractArray, ::Integer)) | - -""" -function build_histogram(img::AbstractArray, nbins::Integer, minval::Union{Real,AbstractGray}, maxval::Union{Real,AbstractGray}) - edges = partition_interval(nbins, minval, maxval) - build_histogram(img, edges) -end - -function build_histogram(img::AbstractArray, nbins::Integer=200) - build_histogram(img, nbins, minfinite(img), maxfinite(img)) -end - -function build_histogram(img::AbstractArray{T}, edges::AbstractRange) where {T<:Color3} - build_histogram(Gray.(img),edges) -end - -function build_histogram(img::AbstractArray, edges::AbstractRange) - Base.has_offset_axes(edges) && throw(ArgumentError("edges must be indexed starting with 1")) - lb = first(axes(edges,1))-1 - ub = last(axes(edges,1)) - first_edge = first(edges) - step_size = step(edges) - counts = fill(0, lb:ub) - for val in img - if isnan(val) - continue - else - if val >= edges[end] - counts[end] += 1 - continue - elseif val < first(edges) - counts[lb] += 1 - else - index = Int(Base.div(val-first_edge,step_size)) + 1 - counts[index] += 1 - end - end - end - edges, counts -end - function _histeq_pixel_rescale(pixel::T, cdf, minval, maxval) where T<:NumberLike n = length(cdf) bin_pixel = clamp(ceil(Int, (pixel - minval) * length(cdf) / (maxval - minval)), 1, n) @@ -495,374 +335,6 @@ end histeq(img::ImageMeta, nbins::Integer) = shareproperties(img, histeq(arraydata(img), nbins)) -abstract type AbstractHistogramOperation end -struct Equalization <: AbstractHistogramOperation end -struct Matching <: AbstractHistogramOperation end - -""" -``` -adjust_histogram(Equalization(),img, nbins) -adjust_histogram(Equalization(),img, nbins, minval, maxval) -``` - -Returns a histogram equalised image with a granularity of `nbins` number of bins. - -# Details - -Histogram equalisation was initially conceived to improve the contrast in a -single-channel grayscale image. The method transforms the -distribution of the intensities in an image so that they are as uniform as -possible [1]. The natural justification for uniformity -is that the image has better contrast if the intensity levels of an image span -a wide range on the intensity scale. As it turns out, the necessary -transformation is a mapping based on the cumulative histogram. - -One can consider an ``L``-bit single-channel ``I \\times J`` image with gray -values in the set ``\\{0,1,\\ldots,L-1 \\}``, as a collection of independent and -identically distributed random variables. Specifically, let the sample space -``\\Omega`` be the set of all ``IJ``-tuples ``\\omega -=(\\omega_{11},\\omega_{12},\\ldots,\\omega_{1J},\\omega_{21},\\omega_{22},\\ldots,\\omega_{2J},\\omega_{I1},\\omega_{I2},\\ldots,\\omega_{IJ})``, -where each ``\\omega_{ij} \\in \\{0,1,\\ldots, L-1 \\}``. Furthermore, impose a -probability measure on ``\\Omega`` such that the functions ``\\Omega \\ni -\\omega \\to \\omega_{ij} \\in \\{0,1,\\ldots,L-1\\}`` are independent and -identically distributed. - -One can then regard an image as a matrix of random variables ``\\mathbf{G} = -[G_{i,j}(\\omega)]``, where each function ``G_{i,j}: \\Omega \\to \\mathbb{R}`` -is defined by -```math -G_{i,j}(\\omega) = \\frac{\\omega_{ij}}{L-1}, -``` -and each ``G_{i,j}`` is distributed according to some unknown density ``f_{G}``. -While ``f_{G}`` is unknown, one can approximate it with a normalised histogram -of gray levels, - -```math -\\hat{f}_{G}(v)= \\frac{n_v}{IJ}, -``` -where -```math -n_v = \\left | \\left\\{(i,j)\\, |\\, G_{i,j}(\\omega) = v \\right \\} \\right | -``` -represents the number of times a gray level with intensity ``v`` occurs in -``\\mathbf{G}``. To transforming the distribution of the intensities so that -they are as uniform as possible one needs to find a mapping ``T(\\cdot)`` such -that ``T(G_{i,j}) \\thicksim U ``. The required mapping turns out to be the -cumulative distribution function (CDF) of the empirical density -``\\hat{f}_{G}``, -```math - T(G_{i,j}) = \\int_0^{G_{i,j}}\\hat{f}_{G}(w)\\mathrm{d} w. -``` - -# Options - -Various options for the parameters of this function are described in more detail -below. - -## Choices for `img` - -The `adjust_histogram(Equalization(),...)` function can handle a variety of -input types. The type of the returned image matches the input type. - -For coloured images, the input is converted to -[YIQ](https://en.wikipedia.org/wiki/YIQ) type and the Y channel is equalised. -This is the combined with the I and Q channels and the resulting image converted -to the same type as the input. - -## Choices for `nbins` - -You can specify the total number of bins in the histogram. - -## Choices for `minval` and `maxval` - -If minval and maxval are specified then intensities are equalized to the range -[minval, maxval]. The default values are 0 and 1. - -# Example - -```julia - -using TestImages, FileIO, ImageView - -img = testimage("mandril_gray"); -imgeq = adjust_histogram(Equalization(),img,256,0,1); - -imshow(img) -imshow(imgeq) -``` - -# References -1. R. C. Gonzalez and R. E. Woods. *Digital Image Processing (3rd Edition)*. Upper Saddle River, NJ, USA: Prentice-Hall, 2006. - -See also: - -| Histogram Equalization | Histogram Matching | Histogram Construction | -|:--------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------:| -| [`adjust_histogram!`](@ref adjust_histogram!(::Equalization, ::AbstractArray, ::Integer, ::Union{Real,AbstractGray}, ::Union{Real,AbstractGray})) | [`adjust_histogram`](@ref adjust_histogram(::Matching, ::AbstractArray, ::AbstractArray, ::Integer)) | [`build_histogram`](@ref build_histogram(::AbstractArray, ::Integer, ::Union{Real,AbstractGray}, ::Union{Real,AbstractGray})) | -| | [`adjust_histogram!`](@ref adjust_histogram!(::Matching, ::AbstractArray, ::AbstractArray, ::Integer)) | | - -""" -function adjust_histogram(operation::Equalization, img::AbstractArray, nbins::Integer, minval::Union{Real,AbstractGray} = 0, maxval::Union{Real,AbstractGray} = 1) - adjust_histogram!(Equalization(), copy(img), nbins, minval, maxval) -end - - -function adjust_histogram(operation::Equalization, img::AbstractArray{T}, nbins::Integer, minval::Union{Real,AbstractGray} = 0, maxval::Union{Real,AbstractGray} = 1) where {T<:Color3} - yiq = convert.(YIQ, img) - yiq_view = channelview(yiq) - adjust_histogram!(Equalization(),view(yiq_view,1,:,:),nbins,minval,maxval) - convert.(T, yiq) -end - - -""" -``` -adjust_histogram!(Equalization(),img, nbins) -adjust_histogram!(Equalization(),img, nbins, minval, maxval) -``` - -Same as [`adjust_histogram`](@ref adjust_histogram(::Equalization, ::AbstractArray, ::Integer, ::Union{Real,AbstractGray}, ::Union{Real,AbstractGray})) except that it modifies the image that was passed as an argument. -""" -function adjust_histogram!(operation::Equalization, img::AbstractArray, nbins::Integer, minval::Union{Real,AbstractGray} = 0, maxval::Union{Real,AbstractGray} = 1) - edges, histogram = build_histogram(img, nbins, minval, maxval) - lb = first(axes(histogram,1)) - ub = last(axes(histogram,1)) - N = length(img) - cdf = cumsum(histogram[lb:ub]/N) - transform_density!(img, edges, cdf, minval, maxval) -end - -function transform_density!(img::AbstractArray,edges::AbstractArray, cdf::AbstractArray, minval::Union{Real,AbstractGray}, maxval::Union{Real,AbstractGray}) - first_edge = first(edges) - step_size = step(edges) - T = eltype(img) - map!(img,img) do val - if val >= edges[end] - newval = cdf[end] - elseif val < first_edge - newval = first(cdf) - else - index = Int(Base.div(val-first_edge,step_size)) + 1 - newval = cdf[index] - end - # Scale the new intensity value to so that it lies in the range [minval, maxval]. - if T <: Integer - newval = ceil(minval + ((newval - first(cdf)) * (maxval - minval) / (cdf[end] - first(cdf)))) - else - newval = minval + ((newval - first(cdf)) * (maxval - minval) / (cdf[end] - first(cdf))) - end - end -end - - -""" -``` -adjust_histogram(Matching(),img, targetimg, nbins) -adjust_histogram(Matching(),img, targetimg, edges) -``` - -Returns a histogram matched image with a granularity of `nbins` number of bins. -The first argument `img` is the image to be matched, and the second argument -`targetimg` is the image having the desired histogram to be matched to. - -# Details -The purpose of histogram matching is to transform the intensities in a source -image so that the intensities distribute according to the histogram of a -specified target image. If one interprets histograms as piecewise-constant -models of probability density functions (see [`build_histogram`](@ref -build_histogram(::AbstractArray, ::Integer, ::Union{Real,AbstractGray}, -::Union{Real,AbstractGray}))), then the histogram matching task can be modelled -as the problem of transforming one probability distribution into another [1]. -It turns out that the solution to this transformation problem involves the -cumulative and inverse cumulative distribution functions of the source and -target probability density functions. - -In particular, let the random variables ``x \\thicksim p_{x} `` and ``z -\\thicksim p_{z}`` represent an intensity in the source and target image -respectively, and let - -```math - S(x) = \\int_0^{x}p_{x}(w)\\mathrm{d} w \\quad \\text{and} \\quad - T(z) = \\int_0^{z}p_{z}(w)\\mathrm{d} w -``` -represent their concomitant cumulative disitribution functions. Then the -sought-after mapping ``Q(\\cdot)`` such that ``Q(x) \\thicksim p_{z} `` is given -by - -```math -Q(x) = T^{-1}\\left( S(x) \\right), -``` - -where ``T^{-1}(y) = \\operatorname{min} \\{ x \\in \\mathbb{R} : y \\leq T(x) -\\}`` is the inverse cumulative distribution function of ``T(x)``. - -The mapping suggests that one can conceptualise histogram matching as performing -histogram equalisation on the source and target image and relating the two -equalised histograms. Refer to [`adjust_histogram`](@ref -adjust_histogram(::Equalization, ::AbstractArray, ::Integer, -::Union{Real,AbstractGray}, ::Union{Real,AbstractGray})) for more details on -histogram equalisation. - -# Options - -Various options for the parameters of this function are described in more detail -below. - -## Choices for `img` and `targetimg` - -The `adjust_histogram(Matching(),...)` function can handle a variety of input -types. The type of the returned image matches the input type. - -For colored images, the inputs are converted to -[YIQ](https://en.wikipedia.org/wiki/YIQ) type and the distributions of the Y -channels are matched. The modified Y channel is then combined with the I and Q -channels and the resulting image converted to the same type as the input. - -## Choices for `nbins` - -You can specify the total number of bins in the histogram. If you do not -specify the number of bins then a default value of 256 bins is utilised. - -## Choices for `edges` - -If you do not designate the number of bins, then you have the option to directly -stipulate how the intervals will be divided by specifying a [`range`](@ref) -type. - -# Example - -```julia -using Images, TestImages, ImageView - -img_source = testimage("mandril_gray") -img_target = adjust_gamma(img_source,1/2) -img_transformed = adjust_histogram(Matching(),img_source, img_target) -#= - A visual inspection confirms that img_transformed resembles img_target - much more closely than img_source. -=# -imshow(img_source) -imshow(img_target) -imshow(img_transformed) -``` - -# References -1. W. Burger and M. J. Burge. *Digital Image Processing*. Texts in Computer Science, 2016. [doi:10.1007/978-1-4471-6684-9](https://doi.org/10.1007/978-1-4471-6684-9) - - -See also: - -| Histogram Equalization | Histogram Matching | Histogram Construction | -|:--------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------:| -| [`adjust_histogram`](@ref adjust_histogram(::Equalization, ::AbstractArray, ::Integer, ::Union{Real,AbstractGray}, ::Union{Real,AbstractGray})) | [`adjust_histogram!`](@ref adjust_histogram(::Matching, ::AbstractArray, ::AbstractArray, ::Integer)) | [`build_histogram`](@ref build_histogram(::AbstractArray, ::Integer, ::Union{Real,AbstractGray}, ::Union{Real,AbstractGray})) | -| [`adjust_histogram!`](@ref adjust_histogram!(::Equalization, ::AbstractArray, ::Integer, ::Union{Real,AbstractGray}, ::Union{Real,AbstractGray})) | | | - - -""" -function adjust_histogram(operation::Matching, img::AbstractArray, targetimg::AbstractArray, nbins::Integer = 256) - adjust_histogram!(Matching(), copy(img), targetimg, nbins) -end - - -function adjust_histogram(operation::Matching, img::AbstractArray, targetimg::AbstractArray, edges::AbstractRange) - adjust_histogram!(Matching(), copy(img), targetimg, edges) -end - - -function adjust_histogram!(operation::Matching, img::AbstractArray{T}, targetimg::AbstractArray{T}, edges::AbstractRange ) where T <: Color3 - yiq = convert.(YIQ, img) - yiq_view = channelview(yiq) - adjust_histogram!(Matching(),view(yiq_view,1,:,:), map(c->YIQ(c).y, targetimg), edges) - convert.(T, yiq) -end - - -function adjust_histogram!(operation::Matching, img::AbstractArray{T}, targetimg::AbstractArray{T}, nbins::Integer = 256 ) where T <: Color3 - yiq = convert.(YIQ, img) - yiq_view = channelview(yiq) - adjust_histogram!(Matching(),view(yiq_view,1,:,:), map(c->YIQ(c).y, targetimg), nbins) - convert.(T, yiq) -end - - -function adjust_histogram!(operation::Matching, img::AbstractArray, targetimg::AbstractArray, edges::AbstractRange ) - edges, pdf, target_pdf = construct_pdfs(img, targetimg, edges) - match_pdf!(Matching(), img, edges, pdf, target_pdf) -end - -""" -``` -adjust_histogram!(Matching(),img, targetimg, nbins) -adjust_histogram!(Matching(),img, targetimg, edges) -``` - -Same as [`adjust_histogram`](@ref adjust_histogram(::Matching, ::AbstractArray, ::AbstractArray, ::Integer)) except that it modifies the image that was passed as an argument. -""" -function adjust_histogram!(operation::Matching, img::AbstractArray, targetimg::AbstractArray, nbins::Integer = 256 ) - edges, pdf, target_pdf = construct_pdfs(img, targetimg, nbins) - match_pdf!(Matching(), img, edges, pdf, target_pdf) -end - -function construct_pdfs(img::AbstractArray, targetimg::AbstractArray, edges::AbstractRange) - _, histogram = build_histogram(img, edges) - _, target_histogram = build_histogram(targetimg, edges) - return edges, histogram / sum(histogram), target_histogram / sum(target_histogram) -end - -function construct_pdfs(img::AbstractArray, targetimg::AbstractArray, nbins::Integer = 256) - if eltype(img) <: AbstractGray - imin, imax = 0, 1 - else - imin, imax = min(minfinite(img), minfinite(targetimg)), max(maxfinite(img), maxfinite(targetimg)) - end - edges, histogram = build_histogram(img, nbins, imin, imax) - _, target_histogram = build_histogram(targetimg, edges) - return edges, histogram / sum(histogram), target_histogram / sum(target_histogram) -end - -function lookup_icdf(cdf::AbstractArray, targetcdf::AbstractArray) - lookup_table = zeros(Int, length(cdf)) - i = 1 - for j = 1:length(cdf) - p = cdf[j] - while i < length(targetcdf) && targetcdf[i+1] <= p - i += 1 - end - lookup_table[j] = i - end - lookup_table -end - -function match_pdf!(operation::Matching, img::AbstractArray, edges::AbstractArray, pdf::AbstractArray, target_pdf::AbstractArray) - cdf = parent(cumsum(pdf)) - target_cdf = parent(cumsum(target_pdf)) - # Precompute the inverse cummulative distribution function of target_cdf. - lookup_table = lookup_icdf(cdf, target_cdf) - # Transform the intensities in img so that they are distributed according - # to the distribution of the target_histogram. - T = eltype(img) - step_size = step(edges) - first_edge = first(edges) - last_edge = last(edges) - map!(img,img) do val - if isnan(val) - return val - else - if val >= last_edge - newval = edges[last(lookup_table)-1] + step_size - elseif val < first_edge - newval = edges[first(lookup_table)] - else - index = Int(Base.div(val-first_edge,step_size)) + 1 - newval = edges[lookup_table[index]] - end - return T <: Integer ? ceil(newval) : newval - end - end -end - - - adjust_gamma(img::ImageMeta, gamma::Number) = shareproperties(img, adjust_gamma(arraydata(img), gamma)) _gamma_pixel_rescale(pixel::T, gamma::Number) where {T<:NumberLike} = pixel ^ gamma