forked from guanyingc/PS-FCN_Poster_LaTex
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathposter_landscape.tex
225 lines (204 loc) · 8.91 KB
/
poster_landscape.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
\documentclass[landscape,a0paper,fontscale=0.292]{baposter}
\usepackage[vlined]{algorithm2e}
\usepackage{times}
\usepackage{calc}
\usepackage{url}
\usepackage{graphicx}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{relsize}
\usepackage{multirow}
\usepackage{booktabs}
\usepackage{graphicx}
\usepackage{multicol}
\usepackage[T1]{fontenc}
\usepackage{ae}
\usepackage{enumitem}
\usepackage{colortbl}
\usepackage{xcolor}
\graphicspath{{images/}}
\setlist[itemize]{leftmargin=*,nosep}
\setlength{\columnsep}{0.7em}
\setlength{\columnseprule}{0mm}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Save space in lists. Use this after the opening of the list
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\compresslist}{%
\setlength{\itemsep}{0pt}%
\setlength{\parskip}{0pt}%
\setlength{\parsep}{0pt}%
}
\renewcommand{\rmdefault}{ptm} % Arial
\renewcommand{\sfdefault}{ptm} % Arial
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Begin of Document
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Here starts the poster
%%---------------------------------------------------------------------------
%% Format it to your taste with the options
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{poster}{
% Show grid to help with alignment
grid=false,
columns=5,
% Column spacing
colspacing=0.7em,
% Color style
headerColorOne=cyan!20!white!90!black,
borderColor=cyan!30!white!90!black,
% Format of textbox
textborder=faded,
% Format of text header
headerborder=open,
headershape=roundedright,
headershade=plain,
background=none,
bgColorOne=cyan!10!white,
headerheight=0.12\textheight}
% Eye Catcher
{
\includegraphics[width=0.08\linewidth]{HKU_logo}
\makebox[0.01\textwidth]{}
\raisebox{0.08\height}{\includegraphics[width=0.08\linewidth]{oxford_logo}}
\makebox[0.04\textwidth]{}
}
% Title
{\sc\huge\bf PS-FCN: A Flexible Learning Framework for Photometric Stereo}
% Authors
{\vspace{0.3em} Guanying Chen$^1$, Kai Han$^2$, Kwan-Yee K. Wong$^1$ \\[0.2em]
{$^1$ The University of Hong Kong, $^2$ University of Oxford\\[0.2em] }}
% University logo
{
\begin{tabular}{r}
\includegraphics[width=0.15\linewidth]{cropped-Logo_ECCV18_RGB_1200x280}
\end{tabular}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Now define the boxes that make up the poster
%%%---------------------------------------------------------------------------
%%% Each box has a name and can be placed absolutely or relatively.
%%% The only inconvenience is that you can only specify a relative position
%%% towards an already declared box. So if you have a box attached to the
%%% bottom, one to the top and a third one which should be inbetween, you
%%% have to specify the top and bottom boxes before you specify the middle
%%% box.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\headerbox{\bf\color{blue} Problem Definition and Contribution}{name=contribution,column=0,row=0,span=2}{
\textbf{\color{blue}Goal:} Estimating the surface normal of a static object given multiple images captured under varying light directions.
\begin{center}
\vspace{-0.8em}
\centering\includegraphics[width=0.8\linewidth]{images/Intro}
\end{center}
\vspace{-0.8em}
\textbf{\color{blue}Key Contributions:}
A flexible deep learning framework for photometric stereo that
\begin{itemize}
\item does not depend on a pre-defined set of light directions during training and testing.
\item processes an arbitrary number of input images in an order-agnostic manner.
\item generalizes well on real data after training only on the synthetic data.
\item achieves state-of-the-art results in calibrated photoemtric stereo and promising results in uncalibrated scenario.
\end{itemize}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\headerbox{\bf\color{blue} Experiments \& Results}{name=results,column=2,row=0,span=3}{
\begin{minipage}[t]{0.5\textwidth}
\textbf{\color{blue}Synthetic Datasets for Training:}
\vspace{-0.2em}
\begin{center}
\includegraphics[width=\textwidth]{images/datasets.pdf}
\end{center}
\end{minipage}
\begin{minipage}[t]{0.5\textwidth}
\textbf{\color{blue}Quantitative Results on DiLiGenT Main Dataset:}
\vspace{-0.2em}
\begin{center}
\includegraphics[width=0.98\textwidth]{images/res_quant_diligent_main}
\end{center}
\end{minipage}
\vspace{0.5em}
\begin{minipage}[t]{0.525\textwidth}
\textbf{\color{blue}Feature Visualization:}
\vspace{-0.5em}
\begin{center}
\includegraphics[width=\textwidth]{images/visualization}
\end{center}
\vspace{-0.9em}
\begin{itemize}
\item Different regions with similar normal directions are fired in different channels. Each channel can therefore be interpreted as the probability of the normal belonging to a certain direction.
\end{itemize}
\end{minipage}
\hfill
\begin{minipage}[t]{0.465\textwidth}
\textbf{\color{blue}Qualitative Results on DiLiGenT Main Dataset:}
\begin{center}
\vspace{-0.5em}
\includegraphics[width=\textwidth]{images/res_qual_diligent_main}
\end{center}
\end{minipage}
\vspace{0.8em}
\textbf{\color{blue}Qualitative Results on the Gourd\&Apple Dataset and Light Stage Data Gallery:}
\vspace{-0.8em}
\begin{center}
\includegraphics[width=1\textwidth]{images/gourd_stage}
\end{center}
\begin{minipage}[t]{0.6\textwidth}
\textbf{\color{blue}Quantitative Results on Spheres Rendered with 100 Different Materials:}
\vspace{-0.5em}
\begin{center}
\includegraphics[width=\textwidth]{images/100brdf.png}
\end{center}
\end{minipage}
\begin{minipage}[t]{0.4\textwidth}
\textbf{\color{blue}Quantitative Results of Uncalibrated PS-FCN on DiLiGenT Main Dataset:}
\vspace{-0.5em}
\begin{center}
\includegraphics[width=\textwidth]{images/res_uncalibrated}
\end{center}
\vspace{-1.5em}
\begin{center}
\begin{minipage}{0.56\linewidth}
\begin{center}
\textbf{Project Webpage}: \\
\vspace{0.5em}\textbf{Code} \& \textbf{Dataset} \& \textbf{Model}
\end{center}
\end{minipage}
\begin{minipage}{0.24\linewidth}
\begin{center}
\includegraphics[width=\linewidth]{images/PS-FCN_QRCode.png}
\end{center}
\end{minipage}
\end{center}
\end{minipage}
}
\headerbox{\bf\color{blue} Formulation}{name=formulation,column=0,below=contribution,span=2}{
\textbf{\color{blue}Assumption:} Orthographic projection and directional lights.
\textbf{\color{blue}Image Formation Equation:} Given $q$ color images of an object with $p$ pixels captured under different light directions, a normal matrix $\mathbf{N}_{3\times p}$, a light direction matrix $\mathbf{L}_{3\times q}$, and an observation matrix $\mathbf{I}_{3\times p\times q}$ can be constructed. Denoting the BRDFs for all observations as $\boldsymbol{\Theta}_{3\times p\times q}$, the image formation equation can be written as
\vspace{-0.5em}
\begin{equation}
\textbf{I} = \boldsymbol{\Theta} \circ \text{repmat}(\textbf{N}^\top \textbf{L}, 3),
\vspace{-0.5em}
\end{equation}
where $\circ$ represents element-wise multiplication, and $\text{repmat}(\mathbf{X},3)$ repeats the matrix $\mathbf{X}$ three times along the first dimension.
\textbf{\color{blue}Main Idea:} Our method directly learns the mapping from $(\textbf{I}, \textbf{L})$ to $\textbf{N}$ without explicitly modeling $\boldsymbol\Theta$.
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\headerbox{\bf\color{blue} Method}{name=abstract,column=0,below=formulation,span=2}{
\textbf{\color{blue}Network Architecture:} PS-FCN consists of three components, namely a shared-weight feature extractor, a fusion layer, and a normal regression network.
\vspace{-0.5em}
\begin{center}
\includegraphics[width=0.8\textwidth]{images/network_v2.pdf}
\end{center}
\vspace{-0.5em}
\textbf{\color{blue}Loss function:}
\vspace{-0.5em}
\begin{equation}
L_{normal} = \frac{1}{hw} \sum_{i,j} (1 - \mathbf{N}_{ij} \cdot \tilde{\mathbf{N}}_{ij})
\vspace{-0.5em}
\end{equation}
where $\mathbf{N}_{ij}$ and $\tilde{\mathbf{N}}_{ij}$ denote the predicted normal and the ground truth, respectively.
}
\end{poster}
\end{document}