-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_classify.py
238 lines (208 loc) · 9.95 KB
/
run_classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# coding=utf-8
from transformers import WEIGHTS_NAME
from run.load_data import load_and_cache_examples
from run.evaluate import evaluates
from run.opts import opts
from run.train import train
from models.model_class import MODEL_CLASSES
from processors.process import PROCESSORS
from utils.seeds import set_seed
import argparse
import glob
import logging
import os
import torch
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
logger = logging.getLogger(__name__)
def main():
parser = argparse.ArgumentParser()
opts(parser)
args = parser.parse_args()
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
logging.basicConfig(
handlers=[logging.FileHandler(os.path.join(args.output_dir, args.log_file)), logging.StreamHandler()],
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logging.info("Input args: %r" % args)
# Setup distant debugging if needed
if args.server_ip and args.server_port:
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which sychronizes nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
# Setup logging
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
)
# Set seed
set_seed(args)
# Prepare dataset
if args.task_name not in PROCESSORS:
raise ValueError("Task not found: %s" % (args.task_name))
processor = PROCESSORS[args.task_name]()
args.output_mode = "classification"
label_list = processor.get_labels()
num_labels = len(label_list)
# Load pretrained model and tokenizer
# Make sure only the first process in distributed training loads model & vocab
if args.local_rank not in [-1, 0]:
torch.distributed.barrier()
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
num_labels=num_labels,
finetuning_task=args.task_name,
cache_dir=args.cache_dir if args.cache_dir else None,
)
logger.info("config = {}".format(config))
tokenizer = tokenizer_class.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None,
)
lang2id = config.lang2id if args.model_type == "xlm" else None
logger.info("lang2id = {}".format(lang2id))
# Make sure only the first process in distributed training loads model & vocab
if args.local_rank == 0:
torch.distributed.barrier()
logger.info("Training/evaluation parameters %s", args)
'''
train start
'''
if args.do_train:
if args.init_checkpoint:
logger.info("loading from folder {}".format(args.init_checkpoint))
model = model_class.from_pretrained(
args.init_checkpoint,
config=config,
cache_dir=args.init_checkpoint,
)
else:
logger.info("loading from existing model {}".format(args.model_name_or_path))
model = model_class.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
cache_dir=args.cache_dir if args.cache_dir else None,
)
model.to(args.device)
train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, split=args.train_split,
language=args.train_language, lang2id=lang2id, evaluate=False)
global_step, tr_loss, best_checkpoint = train(args, train_dataset, model, tokenizer, lang2id)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
logger.info(" best checkpoint = {}".format(best_checkpoint))
'''
save start
'''
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
last_ckp_dir = os.path.join(args.output_dir, 'checkpoint-last')
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
if not os.path.exists(last_ckp_dir) and args.local_rank in [-1, 0]:
os.makedirs(last_ckp_dir)
logger.info("Saving model checkpoint to %s", last_ckp_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(last_ckp_dir)
tokenizer.save_pretrained(last_ckp_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(last_ckp_dir)
tokenizer = tokenizer_class.from_pretrained(last_ckp_dir)
model.to(args.device)
'''
evaluate start
'''
# Evaluation 默认best: (先从init_checkpoint,在best-check,再最后一轮的),evaluate过程中选目录下所有ckp进行比较, 英文dev集上的结果
if args.init_checkpoint:
best_checkpoint = args.init_checkpoint
elif os.path.exists(os.path.join(args.output_dir, 'checkpoint-best')):
best_checkpoint = os.path.join(args.output_dir, 'checkpoint-best')
else:
best_checkpoint = os.path.join(args.output_dir, 'checkpoint-last')
if args.do_eval and args.local_rank in [-1, 0]:
best_score = 0.0
tokenizer = tokenizer_class.from_pretrained(best_checkpoint, do_lower_case=args.do_lower_case)
checkpoints = [best_checkpoint]
if args.eval_all_checkpoints:
checkpoints = list(
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
)
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints on the dev set: %s", checkpoints)
for checkpoint in checkpoints:
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
if args.save_dev:
result = evaluates(args, model, tokenizer, split='dev', language=args.train_language, lang2id=lang2id,
prefix=prefix)
if result['acc'] > best_score:
best_checkpoint = checkpoint
best_score = result['acc']
else:
total = total_correct = 0.0
for language in args.predict_languages.split(','):
result = evaluates(args, model, tokenizer, split=args.test_split, language=language,
lang2id=lang2id, prefix=prefix)
total += result['num']
total_correct += result['correct']
test_score = total_correct / total
if test_score > best_score:
best_checkpoint = checkpoint
best_score = test_score
logger.info("Best checkpoint is {}, best accuracy is {}".format(best_checkpoint,best_score))
# Prediction 触发为真
if args.do_predict and args.local_rank in [-1, 0]:
tokenizer = tokenizer_class.from_pretrained(best_checkpoint, do_lower_case=args.do_lower_case)
model = model_class.from_pretrained(best_checkpoint)
model.to(args.device)
output_predict_file = os.path.join(args.output_dir, args.test_split + '_results.txt')
total = total_correct = 0.0
with open(output_predict_file, 'a') as writer:
writer.write('======= Predict using the model from {} for test:\n'.format(best_checkpoint))
for language in args.predict_languages.split(','):
output_file = os.path.join(args.output_dir, 'test-{}.tsv'.format(language))
result = evaluates(args, model, tokenizer, split=args.test_split, language=language, lang2id=lang2id,
prefix='best_checkpoint', output_file=output_file, label_list=label_list)
writer.write('{}={}\n'.format(language, result['acc']))
logger.info('{}={}'.format(language, result['acc']))
total += result['num']
total_correct += result['correct']
writer.write('total={}\n'.format(total_correct / total))
if __name__ == "__main__":
main()