forked from hevmarriott/HierarchicalClusteringALS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhierarchical_clustering.R
200 lines (181 loc) · 8.63 KB
/
hierarchical_clustering.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
## 1. Install and load libraries
BiocManager::install("biomaRt")
install.packages("Hmisc")
BiocManager::install("DESeq2")
install.packages("NMF")
BiocManager::install("BiocParallel")
install.packages("knitr")
library("biomaRt")
library("Hmisc")
library("DESeq2")
library("BiocParallel")
register(MulticoreParam(20))
library("knitr")
library("NMF")
## 2. Load in the data (cases only) and perform VST normalisation using DESeq2 (no design)
countdata <- read.table("RNAseq_counts_cases.txt", row.names=1, header=TRUE)
head(countdata)
coldata <- read.table("RNAseq_samples_cases_info.txt", row.names=1, header=TRUE)
head(coldata)
dds_genes <- DESeqDataSetFromMatrix(countData = countdata, colData = coldata, design = ~ 1)
dds_genes <- estimateSizeFactors(dds_genes)
idx <- rowSums(counts(dds_genes, normalized=TRUE) >=5 ) >= 10
dds_genes <- dds_genes[idx,]
dds_genes
vsd <- vst(dds_genes, blind=TRUE) #this means it calculates within group variability
head(assay(vsd),3)
vsd.out <- assay(vsd)
write.table(vsd.out,file="RNAseq_cases_VSD.txt",sep="\t")
## 3. Remove sex chromosomes
ensembl = useEnsembl(biomart="ensembl",GRCh=38, dataset="hsapiens_gene_ensembl")
head(listFilters(ensembl))
head(listAttributes(ensembl))
positions <- read.table("hg38_sex_chrom_positions.txt")
ensembl_sex <- getBM(attributes=c("ensembl_gene_id", "chromosome_name", "start_position", "end_position"), filters = c("chromosome_name", "start", "end"), values = list(positions[,1], positions[,2], positions[,3]), mart = ensembl)
ensembl_sex_name <- list(ensembl_sex$ensembl_gene_id)
vsd_nosex_list <- setDT(vsd.out)
vsd_nosex <- vsd.out[rownames(vsd.out) %nin% unlist(ensembl_sex_name)]
dim(vsd_nosex)
write.table(vsd_nosex, "RNAseq_cases_VSD_nosex.txt")
## 4. Extract the top 5000 variably expressed genes
row_MADs <- apply(log(vsd_nosex + 0.1), 1, mad)
row_MADs_df <- data.frame(row_MADs)
n_5000_genes <- head(row_MADs_df[order(row_MADs_df$row_MADs, decreasing = TRUE), ,drop=FALSE], 5000)
n_5000_genes_list <- list(rownames(n_5000_genes))
vsd_nosex_top5000 <- vsd_nosex[rownames(vsd_nosex) %in% unlist(n_5000_genes_list), ]
dim(vsd_nosex_top5000)
write.table(vsd_nosex_top5000, "RNAseq_cases_VSD_nosex_top5000.txt")
## 5. Run NMF clustering (several functions taken from the SAKE package https://github.com/naikai/sake)
## 5.1 Select K setting with the highest cophenetic correlation coefficient
estim.r <- nmf(vsd_nosex_top5000, 2:10, nrun=100, "nsNMF", .opt=paste0("vp", 20), seed=123211, maxIter=1000)
res <- estim.r
nmf_rank <- estim.r$measures[, 1]
### plot for cophenetic correlation
ylabel <- colnames(estim.r$measures)[18]
plot(nmf_rank, estim.r$measures[,13], type="o", xlab="Rank", ylab=ylabel)
### plot for dispersion
ylabel <- colnames(estim.r$measures)[19]
plot(nmf_rank, estim.r$measures[,13], type="o", xlab="Rank", ylab=ylabel)
### plot for consensus
ylabel <- colnames(estim.r$measures)[21]
plot(nmf_rank, estim.r$measures[,13], type="o", xlab="Rank", ylab=ylabel)
## 5.2 Run NMF with selected k setting (was 3 in our case)
res2 <- nmf(vsd_nosex_top5000, 3, nrun=100, "nsNMF", .opt=paste0("vp", 20), seed=123211, maxIter=1000)
## 5.3 Generate different summary plots
### summary of measures used to evaluate which K setting is best
summary.class <- as.data.frame(NMF::summary(res2))
write.csv(summary.class, "estimateK1000iterations.txt")
### extract most informative features (genes) which define each of the clusters, and the total gene assignment
nmf_extract_feature <- function(res2, rawdata=NULL, manual.num=0, method="default", math="mad", FScutoff=0.9){
feature.score <- featureScore(res2)
predict.feature <- predict(res2, what="features", prob=T)
data.feature <- data.frame(Gene=names(feature.score),
featureScore=feature.score,
Group=predict.feature$predict,
prob=predict.feature$prob,
stringsAsFactors=FALSE)
if(method=="total"){
print("return all featureScores")
}else{
if(method=="default"){
# extracted features for each group
if (manual.num==0){
extract.feature <- extractFeatures(res2)
}else if (manual.num>0 && manual.num<=length(featureNames(res2))){
extract.feature <- extractFeatures(res2, manual.num)
}else{
stop("wrong number of (manual num) features ")
}
data.feature <- extract.feature %>%
lapply(., function(x) data.feature[x, ]) %>%
rbindlist %>%
as.data.frame.matrix
}else if(method=="rank"){
if(is.null(rawdata)){
stop("error: need to provide original expression data if method is 'rank' ")
}
# data.feature <- cbind(data.feature, math=apply(log2(rawdata+1), 1, math)) %>%
data.feature <- cbind(data.feature, math=apply(rawdata, 1, math)) %>%
filter(featureScore>=FScutoff) %>%
arrange(Group, dplyr::desc(math), dplyr::desc(prob))
if(manual.num>0){
data.feature <- group_by(data.feature, Group) %>%
top_n(manual.num)
# top_n(manual.num, math)
# filter(min_rank(desc(math))<=manual.num)
}
}
}
return(data.feature)
}
write.table(nmf_extract_feature(res2, method="default", math="mad"), "genes3clusters_mostinformativegenespercluster.txt")
write.table(nmf_extract_feature(res2, method="total", math="mad"), "genes3clusters_totalgenespercluster.txt")
### extract groups i.e. samples within clusters
nmf_extract_group <- function(res, type="consensus", matchConseOrder=F){
data <- NULL
if(type=="consensus"){
predict.consensus <- predict(res, what="consensus")
silhouette.consensus <- silhouette(res, what="consensus")
# It turns out the factor levels is the NMF_assigned_groups from consensus matrix
# that matches the original sampleNames(res) order
# The attributes(a.predict.consensus)$iOrd is the idx order for it to match the
# order of the samples in consensusmap(res). It is just for displaying
# Therefore, the merged data frame sampleNames(res) + a.predict.consensus is the final
# consensus results.
data <- data.frame(Sample_ID=sampleNames(res),
nmf_subtypes = predict.consensus,
sil_width = signif(silhouette.consensus[, "sil_width"], 3))
# If we want to display as we see in consensusmap, we just need to reoder everything.
# Now re-order data to match consensusmap sample order
if(matchConseOrder){
sample.order <- attributes(predict.consensus)$iOrd
data <- data[sample.order, ]
}
}else if(type=="samples"){
predict.samples <- predict(res, what="samples", prob=T)
silhouette.samples <- silhouette(res, what="samples")
data <- data.frame(Sample_ID=names(predict.samples$predict),
nmf_subtypes = predict.samples$predict,
sil_width = signif(silhouette.samples[, "sil_width"], 3),
prob = signif(predict.samples$prob, 3))
}else{
stop(paste("Wrong type:", type, "Possible options are: 'consensus', 'samples' "))
}
return(data)
}
write.table(nmf_extract_group(res2, type="consensus", matchConseOrder=T), "genes3clusters_consensusgroups.txt")
write.table(nmf_extract_group(res2, type="samples", matchConseOrder=T), "genes3clusters_samplegroups.txt")
### obtain summary plots for these results
nmf_plot <- function(res, type="consensus", subsetRow=TRUE, save.image=F, hclustfun="average", silorder=F, add_original_name=T){
if(save.image)
pdf(res.pdf, width=18, height=15)
if(type=="result"){
print(plot(res))
}else{
si <- silhouette(res, what=type)
if(type=="features"){
if(silorder){
basismap(res, Rowv = si, subsetRow=subsetRow)
}else{
basismap(res, subsetRow = subsetRow)
}
}else if(type=="samples"){
if(silorder){
coefmap(res, Colv = si)
}else{
coefmap(res)
}
}else if(type=="consensus"){
if(add_original_name){
colnames(res@consensus) <- sampleNames(res)
rownames(res@consensus) <- sampleNames(res)
}
consensusmap(res, hclustfun=hclustfun)
}
}
if(save.image)
dev.off()
}
nmf_plot(res2, type="features", silorder=T, save.image=T)
nmf_plot(res2, type="consensus", silorder=T, save.image=T)
nmf_plot(res2, type="samples", silorder=T, save.image=T)