-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstats.py
executable file
·211 lines (187 loc) · 10.1 KB
/
stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
'''
Parses the analysis files (created by the analysis module) to perform statistical
analysis, specifically by evaluating the means, medians, and Wilcoxon's tests.
'''
import numpy as np
import scipy.stats
from common import dilation_radii, rau_dsc_dtype, yuanxia_dsc_dtype, rau_gtc_dtype, yuanxia_gtc_dtype
def print_mean_median(matrix, measure, dilation_radii):
'''
Calculates and prints the mean and median of a measure (DSC or GTC) for all
given dilation radii. Also prints out the dilation radii that had the largest
differences for mean and median.
matrix: The read in matrix with columns corresponding to the analysis files.
measure: Either 'dsc' or 'gtc'.
dilation_radii: An iteratable for the dilation radii to consider.
'''
min_measure_mean = 1
min_radius_mean = -1
max_measure_mean = 0
max_radius_mean = -1
min_measure_median = 1
min_radius_median = -1
max_measure_median = 0
max_radius_median = -1
for dilation_radius in dilation_radii:
filtered = [row[measure] for row in matrix if row['dilation_radius'] == dilation_radius]
mean = np.mean(filtered)
median = np.median(filtered)
print('Radius', dilation_radius)
print(' Mean ' + measure.upper() + ':', mean)
print(' Median ' + measure.upper() + ':', median)
if mean < min_measure_mean:
min_measure_mean = mean
min_radius_mean = dilation_radius
if mean > max_measure_mean:
max_measure_mean = mean
max_radius_mean = dilation_radius
if median < min_measure_median:
min_measure_median = median
min_radius_median = dilation_radius
if median > max_measure_median:
max_measure_median = median
max_radius_median = dilation_radius
print('Largest %s mean difference was between radii %d and %d = %.4f' % (measure.upper(), min_radius_mean, max_radius_mean, max_measure_mean - min_measure_mean))
print('Largest %s median difference was between radii %d and %d = %.4f' % (measure.upper(), min_radius_median, max_radius_median, max_measure_median - min_measure_median))
def print_wilcoxon(matrix, measure, radius1, radius2):
'''
Calculates and prints the Wilcoxon test p-value for comparing between two radii.
matrix: The read in matrix with columns corresponding to the analysis files.
measure: Either 'dsc' or 'gtc'.
radius1, radius2: The dilation radii that are being compared (the independent
variables in this test).
'''
filtered1 = [row[measure] for row in matrix if row['dilation_radius'] == radius1]
filtered2 = [row[measure] for row in matrix if row['dilation_radius'] == radius2]
_, p_value = scipy.stats.wilcoxon(filtered1, filtered2)
print('Wilcoxon result for %s between radii %d and %d has p = %.6f' % (measure.upper(), radius1, radius2, p_value))
def print_pop_normality(matrix, measure):
filtered = [row[measure] for row in matrix]
_, p = scipy.stats.normaltest(filtered)
print('Data is NOT normally distributed with p = %.4f' % p)
def print_friedman(matrix, measure, dilation_radii):
filtered_by_radi = []
for radius in dilation_radii:
filtered_radii = [row[measure] for row in matrix if row['dilation_radius'] == radius]
filtered_by_radi.append(filtered_radii)
_, p_value = scipy.stats.friedmanchisquare(*filtered_by_radi)
print('Friedman test for %s has p value = %0.6f' % (measure.upper(), p_value))
rau_dsc_strokes = np.loadtxt('./analysis/dsc/rau_strokes.txt', dtype=rau_dsc_dtype, skiprows=1)
rau_dsc_points = np.loadtxt('./analysis/dsc/rau_points.txt', dtype=rau_dsc_dtype, skiprows=1)
yuanxia_dsc = np.loadtxt('./analysis/dsc/yuanxia.txt', dtype=yuanxia_dsc_dtype, skiprows=1)
rau_gtc_strokes = np.loadtxt('./analysis/gtc/rau_strokes.txt', dtype=rau_gtc_dtype, skiprows=1)
rau_gtc_points = np.loadtxt('./analysis/gtc/rau_points.txt', dtype=rau_gtc_dtype, skiprows=1)
yuanxia_gtc = np.loadtxt('./analysis/gtc/yuanxia.txt', dtype=yuanxia_gtc_dtype, skiprows=1)
# Time pressure versions
yuanxia_dsc15 = yuanxia_dsc[yuanxia_dsc['time_pressure'] == 15]
yuanxia_gtc15 = yuanxia_gtc[yuanxia_gtc['time_pressure'] == 15]
yuanxia_dsc25 = yuanxia_dsc[yuanxia_dsc['time_pressure'] == 25]
yuanxia_gtc25 = yuanxia_gtc[yuanxia_gtc['time_pressure'] == 25]
yuanxia_dsc40 = yuanxia_dsc[yuanxia_dsc['time_pressure'] == 40]
yuanxia_gtc40 = yuanxia_gtc[yuanxia_gtc['time_pressure'] == 40]
print('Stats for Boykov segmentation')
print('Rau\'s strokes:')
print_mean_median(rau_dsc_strokes, 'dsc', dilation_radii)
print_mean_median(rau_gtc_strokes, 'gtc', dilation_radii)
print_wilcoxon(rau_dsc_strokes, 'dsc', 0, 4)
print_wilcoxon(rau_gtc_strokes, 'gtc', 0, 4)
print_pop_normality(rau_dsc_strokes, 'dsc')
print_pop_normality(rau_gtc_strokes, 'gtc')
print_friedman(rau_dsc_strokes, 'dsc', dilation_radii)
print_friedman(rau_gtc_strokes, 'gtc', dilation_radii)
print('\nRau\'s points:')
print_mean_median(rau_dsc_points, 'dsc', dilation_radii)
print_mean_median(rau_gtc_points, 'gtc', dilation_radii)
print_wilcoxon(rau_dsc_points, 'dsc', 0, 4)
print_wilcoxon(rau_gtc_points, 'gtc', 0, 4)
print_pop_normality(rau_dsc_points, 'dsc')
print_pop_normality(rau_gtc_points, 'gtc')
print_friedman(rau_dsc_points, 'dsc', dilation_radii)
print_friedman(rau_gtc_points, 'gtc', dilation_radii)
print('\nYuaxia\'s points (time pressure 15):')
print_mean_median(yuanxia_dsc15, 'dsc', dilation_radii)
print_mean_median(yuanxia_gtc15, 'gtc', dilation_radii)
print_wilcoxon(yuanxia_dsc15, 'dsc', 0, 4)
print_wilcoxon(yuanxia_gtc15, 'gtc', 0, 4)
print_pop_normality(yuanxia_dsc15, 'dsc')
print_pop_normality(yuanxia_gtc15, 'gtc')
print_friedman(yuanxia_dsc15, 'dsc', dilation_radii)
print_friedman(yuanxia_gtc15, 'gtc', dilation_radii)
print('\nYuaxia\'s points (time pressure 25):')
print_mean_median(yuanxia_dsc25, 'dsc', dilation_radii)
print_mean_median(yuanxia_gtc25, 'gtc', dilation_radii)
print_wilcoxon(yuanxia_dsc25, 'dsc', 0, 4)
print_wilcoxon(yuanxia_gtc25, 'gtc', 0, 4)
print_pop_normality(yuanxia_dsc25, 'dsc')
print_pop_normality(yuanxia_gtc25, 'gtc')
print_friedman(yuanxia_dsc25, 'dsc', dilation_radii)
print_friedman(yuanxia_gtc25, 'gtc', dilation_radii)
print('\nYuaxia\'s points (time pressure 40):')
print_mean_median(yuanxia_dsc40, 'dsc', dilation_radii)
print_mean_median(yuanxia_gtc40, 'gtc', dilation_radii)
print_wilcoxon(yuanxia_dsc40, 'dsc', 0, 4)
print_wilcoxon(yuanxia_gtc40, 'gtc', 0, 4)
print_pop_normality(yuanxia_dsc40, 'dsc')
print_pop_normality(yuanxia_gtc40, 'gtc')
print_friedman(yuanxia_dsc40, 'dsc', dilation_radii)
print_friedman(yuanxia_gtc40, 'gtc', dilation_radii)
print()
rau_dsc_strokes_onecut = np.loadtxt('./analysis/dsc/rau_strokes_onecut.txt', dtype=rau_dsc_dtype, skiprows=1)
rau_dsc_points_onecut = np.loadtxt('./analysis/dsc/rau_points_onecut.txt', dtype=rau_dsc_dtype, skiprows=1)
yuanxia_dsc_onecut = np.loadtxt('./analysis/dsc/yuanxia_onecut.txt', dtype=yuanxia_dsc_dtype, skiprows=1)
rau_gtc_strokes_onecut = np.loadtxt('./analysis/gtc/rau_strokes_onecut.txt', dtype=rau_gtc_dtype, skiprows=1)
rau_gtc_points_onecut = np.loadtxt('./analysis/gtc/rau_points_onecut.txt', dtype=rau_gtc_dtype, skiprows=1)
yuanxia_gtc_onecut = np.loadtxt('./analysis/gtc/yuanxia_onecut.txt', dtype=yuanxia_gtc_dtype, skiprows=1)
# Time pressure versions
yuanxia_dsc_onecut15 = yuanxia_dsc_onecut[yuanxia_dsc['time_pressure'] == 15]
yuanxia_gtc_onecut15 = yuanxia_gtc_onecut[yuanxia_gtc['time_pressure'] == 15]
yuanxia_dsc_onecut25 = yuanxia_dsc_onecut[yuanxia_dsc['time_pressure'] == 25]
yuanxia_gtc_onecut25 = yuanxia_gtc_onecut[yuanxia_gtc['time_pressure'] == 25]
yuanxia_dsc_onecut40 = yuanxia_dsc_onecut[yuanxia_dsc['time_pressure'] == 40]
yuanxia_gtc_onecut40 = yuanxia_gtc_onecut[yuanxia_gtc['time_pressure'] == 40]
print('Stats for OneCut segmentation')
print('Rau\'s strokes:')
print_mean_median(rau_dsc_strokes_onecut, 'dsc', dilation_radii)
print_mean_median(rau_gtc_strokes_onecut, 'gtc', dilation_radii)
print_wilcoxon(rau_dsc_strokes_onecut, 'dsc', 0, 4)
print_wilcoxon(rau_gtc_strokes_onecut, 'gtc', 0, 4)
print_pop_normality(rau_dsc_strokes_onecut, 'dsc')
print_pop_normality(rau_gtc_strokes_onecut, 'gtc')
print_friedman(rau_dsc_strokes_onecut, 'dsc', dilation_radii)
print_friedman(rau_gtc_strokes_onecut, 'gtc', dilation_radii)
print('\nRau\'s points:')
print_mean_median(rau_dsc_points_onecut, 'dsc', dilation_radii)
print_mean_median(rau_gtc_points_onecut, 'gtc', dilation_radii)
print_wilcoxon(rau_dsc_points_onecut, 'dsc', 0, 4)
print_wilcoxon(rau_gtc_points_onecut, 'gtc', 0, 4)
print_pop_normality(rau_dsc_points_onecut, 'dsc')
print_pop_normality(rau_gtc_points_onecut, 'gtc')
print_friedman(rau_dsc_points_onecut, 'dsc', dilation_radii)
print_friedman(rau_gtc_points_onecut, 'gtc', dilation_radii)
print('\nYuaxia\'s points (time pressure 15):')
print_mean_median(yuanxia_dsc_onecut15, 'dsc', dilation_radii)
print_mean_median(yuanxia_gtc_onecut15, 'gtc', dilation_radii)
print_wilcoxon(yuanxia_dsc_onecut15, 'dsc', 0, 4)
print_wilcoxon(yuanxia_gtc_onecut15, 'gtc', 0, 4)
print_pop_normality(yuanxia_dsc_onecut15, 'dsc')
print_pop_normality(yuanxia_gtc_onecut15, 'gtc')
print_friedman(yuanxia_dsc_onecut15, 'dsc', dilation_radii)
print_friedman(yuanxia_gtc_onecut15, 'gtc', dilation_radii)
print('\nYuaxia\'s points (time pressure 25):')
print_mean_median(yuanxia_dsc_onecut25, 'dsc', dilation_radii)
print_mean_median(yuanxia_gtc_onecut25, 'gtc', dilation_radii)
print_wilcoxon(yuanxia_dsc_onecut25, 'dsc', 0, 4)
print_wilcoxon(yuanxia_gtc_onecut25, 'gtc', 0, 4)
print_pop_normality(yuanxia_dsc_onecut25, 'dsc')
print_pop_normality(yuanxia_gtc_onecut25, 'gtc')
print_friedman(yuanxia_dsc_onecut25, 'dsc', dilation_radii)
print_friedman(yuanxia_gtc_onecut25, 'gtc', dilation_radii)
print('\nYuaxia\'s points (time pressure 40):')
print_mean_median(yuanxia_dsc_onecut40, 'dsc', dilation_radii)
print_mean_median(yuanxia_gtc_onecut40, 'gtc', dilation_radii)
print_wilcoxon(yuanxia_dsc_onecut40, 'dsc', 0, 4)
print_wilcoxon(yuanxia_gtc_onecut40, 'gtc', 0, 4)
print_pop_normality(yuanxia_dsc_onecut40, 'dsc')
print_pop_normality(yuanxia_gtc_onecut40, 'gtc')
print_friedman(yuanxia_dsc_onecut40, 'dsc', dilation_radii)
print_friedman(yuanxia_gtc_onecut40, 'gtc', dilation_radii)