-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
109 lines (80 loc) · 2.47 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import json
from nltk_utils import tokenize,stem,bag_of_words
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset,DataLoader
from model import NeuralNet
with open('intents.json','r',encoding="utf-8") as f:
intents = json.load(f)
all_words = []
tags = []
xy = []
for intent in intents['intents']:
tag = intent['tag']
tags.append(tag)
for pattern in intent['patterns']:
w = tokenize(pattern)
all_words.extend(w)
xy.append((w,tag))
ignore_words = ['?','!','.',',']
all_words = [stem(w) for w in all_words if w not in ignore_words]
all_words = sorted(set(all_words))
tags = sorted(set(tags))
X_train = []
y_train = []
for (pattern_sentence,tag) in xy :
bag = bag_of_words(pattern_sentence,all_words)
X_train.append(bag)
label = tags.index(tag)
y_train.append(label) # CrossEntropyLoss
X_train = np.array(X_train)
y_train = np.array(y_train)
class ChatDataset(Dataset):
def __init__(self):
self.n_samples = len(X_train)
self.x_data = X_train
self.y_data = y_train
def __getitem__(self,index):
return self.x_data[index],self.y_data[index]
def __len__(self):
return self.n_samples
#HyperParameters
batch_size = 8
hidden_size = 8
output_size = len(tags)
input_size = len(X_train[0])
learning_rate = 0.001
num_epochs = 300
dataset = ChatDataset()
train_loader = DataLoader(dataset= dataset,batch_size=batch_size,shuffle=True,num_workers = 2)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = NeuralNet(input_size,hidden_size,output_size).to(device)
#loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(),lr =learning_rate)
for epoch in range(num_epochs):
for (words,labels) in train_loader:
words = words.to(device)
labels = labels.to(device)
#forward
outputs = model(words)
loss = criterion(outputs,labels)
#backwards
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+1)% 100 == 0:
print(f'epoch {epoch + 1} /{num_epochs}, loss = {loss.item():.4f}')
print(f'finalloss = {loss.item():.4f}')
data = {
"model_state":model.state_dict(),
"input_size":input_size,
"output_size":output_size,
"hidden_size":hidden_size,
"all_words": all_words,
"tags":tags
}
FILE = "data.pth"
torch.save(data,FILE)
print(f'training complete. file saved to {FILE} ')