This repository has been archived by the owner on Jul 21, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
docs.xml
616 lines (609 loc) · 28.6 KB
/
docs.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
<?xml version="1.0"?>
<doc>
<assembly>
<name>NEA</name>
</assembly>
<members>
<member name="T:NEA.NeuralNetwork.ActivationFunctions">
<summary>
Provides static functional implementations of neural network activation functions.
</summary>
</member>
<member name="M:NEA.NeuralNetwork.ActivationFunctions.Sigmoid(NEA.Tensor.Tensor)">
<summary>
Applies the element-wise sigmoid function.
</summary>
<param name="x">The input tensor.</param>
<returns>The input tensor, with the sigmoid function applied to each value.</returns>
</member>
<member name="M:NEA.NeuralNetwork.ActivationFunctions.Sigmoid(NEA.Tensor.Matrix)">
<summary>
Applies the element-wise sigmoid function.
</summary>
<param name="x">The input matrix.</param>
<returns>The input matrix, with the sigmoid function applied to each value.</returns>
</member>
<member name="M:NEA.NeuralNetwork.ActivationFunctions.ReLU(NEA.Tensor.Tensor)">
<summary>
Applies the element-wise rectified linear unit function.
</summary>
<param name="x">The input tensor.</param>
<returns>The input tensor, with the rectified linear unit function applied to each value.</returns>
</member>
<member name="M:NEA.NeuralNetwork.ActivationFunctions.ReLU(NEA.Tensor.Matrix)">
<summary>
Applies the element-wise rectified linear unit function.
</summary>
<param name="x">The input matrix.</param>
<returns>The input matrix, with the rectified linear unit function applied to each value.</returns>
</member>
<member name="M:NEA.NeuralNetwork.ActivationFunctions.Tanh(NEA.Tensor.Tensor)">
<summary>
Applies the element-wise hyperbolic tangent function.
</summary>
<param name="x">The input tensor.</param>
<returns>The input tensor, with the hyperbolic tangent function applied to each value.</returns>
</member>
<member name="M:NEA.NeuralNetwork.ActivationFunctions.Tanh(NEA.Tensor.Matrix)">
<summary>
Applies the element-wise hyperbolic tangent function.
</summary>
<param name="x">The input matrix.</param>
<returns>The input matrix, with the hyperbolic tangent function applied to each value.</returns>
</member>
<member name="M:NEA.NeuralNetwork.ActivationFunctions.Softmax(NEA.Tensor.Tensor)">
<summary>
Applies the Softmax function to each batch of an n-dimensional input tensor rescaling them so that the elements of the n-dimensional output tensor lie in the range [0,1] and sum to 1.
</summary>
<param name="x">The input tensor.</param>
<returns>The input tensor, with the softmax function applied to each batch.</returns>
</member>
<member name="M:NEA.NeuralNetwork.ActivationFunctions.Softmax(NEA.Tensor.Matrix)">
<summary>
Applies the Softmax function to an input matrix, rescaling each element so that the elements of the matrix lie in the range [0,1] and sum to 1.
</summary>
<param name="x">The input matrix.</param>
<returns>The input matrix, with the softmax function applied.</returns>
</member>
<member name="T:NEA.NeuralNetwork.IModule">
<summary>
Interface implemented by all neural network modules.
</summary>
</member>
<member name="M:NEA.NeuralNetwork.IModule.Forward(NEA.Tensor.Tensor)">
<summary>
The function to be called on a forward pass.
</summary>
<param name="input">The input sample.</param>
<returns>The result of the forward pass on the input sample.</returns>
</member>
<member name="T:NEA.NeuralNetwork.Layers.Dropout">
<summary>
During training, randomly zeroes some of the elements of the input tensor with probability p using samples from a uniform distribution.
</summary>
</member>
<member name="M:NEA.NeuralNetwork.Layers.Dropout.#ctor(System.Int32,System.Single)">
<summary>
Creates a new dropout layer with the specified input size and dropout probability p.
</summary>
<param name="InputSize">The size of the input sample.</param>
<param name="p">The probability of a value being reduced to 0.</param>
</member>
<member name="M:NEA.NeuralNetwork.Layers.Dropout.Forward(NEA.Tensor.Tensor)">
<summary>
During training, randomly zeroes some of the elements of the input tensor with probability p using samples from a uniform distribution.
</summary>
</member>
<member name="T:NEA.NeuralNetwork.Layers.Identity">
<summary>
A placeholder identity operator.
</summary>
</member>
<member name="M:NEA.NeuralNetwork.Layers.Identity.#ctor(System.Int32)">
<summary>
Creates a new identity layer.
</summary>
<param name="InputSize">The size of the input sample. This will also be the size of the output sample.</param>
</member>
<member name="M:NEA.NeuralNetwork.Layers.Identity.Forward(NEA.Tensor.Tensor)">
<summary>
A placeholder identity operator.
</summary>
<param name="x">The input sample.</param>
<returns>The input sample.</returns>
</member>
<member name="T:NEA.NeuralNetwork.Layers.Layer">
<summary>
Base class from which all layers are derived.
</summary>
</member>
<member name="P:NEA.NeuralNetwork.Layers.Layer.InputSize">
<summary>
The size of each input sample
</summary>
</member>
<member name="P:NEA.NeuralNetwork.Layers.Layer.OutputSize">
<summary>
The size of each output sample
</summary>
</member>
<member name="M:NEA.NeuralNetwork.Layers.Layer.Forward(NEA.Tensor.Tensor)">
<summary>
Method to be called during forward-propagation.
</summary>
<param name="x">The input sample</param>
<returns>Tensor of this layers output sample.</returns>
</member>
<member name="T:NEA.NeuralNetwork.Layers.Linear">
<summary>
Applies a linear transformation to the incoming data.
</summary>
</member>
<member name="M:NEA.NeuralNetwork.Layers.Linear.#ctor(System.Int32,System.Int32)">
<summary>
Creates a new linear layer.
</summary>
<param name="InputSize">The size of the input sample.</param>
<param name="OutputSize">This size of the output sample.</param>
</member>
<member name="M:NEA.NeuralNetwork.Layers.Linear.Forward(NEA.Tensor.Tensor)">
<summary>
Applies a linear transformation to the incoming data.
</summary>
<param name="x">The input data.</param>
<returns>The transformed input data.</returns>
</member>
<member name="M:NEA.NeuralNetwork.Layers.Linear.ResetParameters">
<summary>
Randomly initialises the weights for the layer. Biases are initialised to 0.
</summary>
</member>
<member name="T:NEA.NeuralNetwork.LossFunctions">
<summary>
Provides static functional implementations of statistical loss/error functions.
</summary>
</member>
<member name="M:NEA.NeuralNetwork.LossFunctions.MSELoss(NEA.Tensor.Tensor,NEA.Tensor.Tensor)">
<summary>
Measures the mean squared error (squared L2 norm) between each element of each batch in the input x and target y.
</summary>
<param name="x">The input.</param>
<param name="y">The target.</param>
<returns>An array showing the the mean squared error (squared L2 norm) of each batch of the input x and target y.</returns>
</member>
<member name="M:NEA.NeuralNetwork.LossFunctions.MSELoss(NEA.Tensor.Matrix,NEA.Tensor.Matrix)">
<summary>
Measures the mean squared error (squared L2 norm) between each element in the input x and target y.
</summary>
<param name="x">The input.</param>
<param name="y">The target.</param>
<returns>A float showing the the mean squared error (squared L2 norm) between each element of the input x and target y.</returns>
</member>
<member name="M:NEA.NeuralNetwork.LossFunctions.CrossEntropyLoss(NEA.Tensor.Tensor,NEA.Tensor.Tensor)">
<summary>
Measures the cross entropy loss between each element in the input x and target y.
</summary>
<param name="x">The input, containing the raw, unnormalized scores for each class.</param>
<param name="y">The target, a batch of one-hot vectors.</param>
<returns>A float array showing the cross entropy loss of each batch of the input x and target y.</returns>
</member>
<member name="M:NEA.NeuralNetwork.LossFunctions.CrossEntropyLoss(NEA.Tensor.Matrix,NEA.Tensor.Matrix)">
<summary>
Measures the cross entropy loss between each element in the input x and target y.
</summary>
<param name="x">The input, containing the raw, unnormalized scores for each class.</param>
<param name="y">The target, a one-hot vector.</param>
<returns>A float showing the cross entropy loss of the input x and target y.</returns>
</member>
<member name="T:NEA.Tensor.Matrix">
<summary>
A class representing a matrix. Uses a single-precision Float32 data type.
</summary>
</member>
<member name="P:NEA.Tensor.Matrix.Shape">
<summary>
The dimensions of the matrix, in order [rows,columns].
</summary>
</member>
<member name="M:NEA.Tensor.Matrix.#ctor(System.Int32,System.Int32)">
<summary>
Initialises an empty matrix with the specified number of rows and columns.
</summary>
/// <param name="rows">The number of rows.</param>
<param name="columns">The number of columns.</param>
</member>
<member name="M:NEA.Tensor.Matrix.#ctor(System.Single[0:,0:])">
<summary>
Initialises a matrix with the values in the specified array
</summary>
<param name="data">Array of values to populate the matrix</param>
</member>
<member name="M:NEA.Tensor.Matrix.ZeroMatrix(System.Int32,System.Int32)">
<summary>
Creates a matrix of the specified dimensions, with all values initialised to 0.
</summary>
<returns>A new matrix initialised with all values at 0.</returns>
</member>
<member name="M:NEA.Tensor.Matrix.GaussianMatrix(System.Int32,System.Int32,System.Single,System.Single)">
<summary>
Creates a matrix of the specified dimensions populated with values drawn from a random Gaussian distribution.
</summary>
<param name="rows">The number of rows in the matrix.</param>
<param name="columns">The number of columns in the matrix.</param>
<param name="mean">The mean of the distribution. Default 0</param>
<param name="stdDev">The standard deviation of the distribution. Default 1</param>
<returns>A new matrix intialised with the specified parameters.</returns>
</member>
<member name="P:NEA.Tensor.Matrix.Item(System.Int32)">
<summary>
Gets a single value from the first column of the matrix. Only works with column matricies.
</summary>
<param name="idx">The row index of the required item.</param>
<returns>The float at [idx,0].</returns>
</member>
<member name="P:NEA.Tensor.Matrix.Item(System.Int32,System.Int32)">
<summary>
Specifies a single value at the desired row and column indices. Allows get and set operations.
</summary>
<param name="row">The row index.</param>
<param name="col">The column index.</param>
<returns>The float at [row,col].</returns>
</member>
<member name="M:NEA.Tensor.Matrix.GetEnumerator">
<summary>
Gets an enumerable collection from this matrix.
</summary>
<returns>An IEnumerator representing the matrix.</returns>
</member>
<member name="M:NEA.Tensor.Matrix.Equals(System.Object)">
<summary>
Checks two objects are equal.
</summary>
<param name="obj">The object to compare this matrix to.</param>
<returns>A boolean equality value.</returns>
</member>
<member name="M:NEA.Tensor.Matrix.GetHashCode">
<summary>
Gets the hash value for this matrix.
</summary>
<returns>The hash value of this matrix.</returns>
</member>
<member name="M:NEA.Tensor.Matrix.Add(NEA.Tensor.Matrix)">
<summary>
Adds matrix A to this matrix.
</summary>
</member>
<member name="M:NEA.Tensor.Matrix.Hadamard(NEA.Tensor.Matrix)">
<summary>
Performs the Hadamard (elementwise) product between this matrix and matrix A.
</summary>
</member>
<member name="M:NEA.Tensor.Matrix.Dot(NEA.Tensor.Matrix)">
<summary>
Returns the dot product of this matrix and matrix A.
</summary>
<returns>The dot product.</returns>
</member>
<member name="M:NEA.Tensor.Matrix.Transform(NEA.Tensor.Matrix)">
<summary>
Transforms this matrix by matrix A.
</summary>
</member>
<member name="M:NEA.Tensor.Matrix.Reshape(System.Int32,System.Int32)">
<summary>
Reshapes the matrix to fit the specified dimensions.
</summary>
</member>
<member name="M:NEA.Tensor.Matrix.Transpose">
<summary>
Transposes the matrix.
</summary>
</member>
<member name="M:NEA.Tensor.Matrix.ToArray">
<summary>
Returns a new float array storing the data from the matrix.
</summary>
<returns>A new float array storing the data from the matrix.</returns>
</member>
<member name="M:NEA.Tensor.Matrix.ToString">
<summary>
Generates a string representation of this matrix.
</summary>
<returns>A string representing this matrix.</returns>
</member>
<member name="M:NEA.Tensor.MatrixUtils.RandomGaussian(System.Single,System.Single)">
<summary>
Draws variables from a random Gaussian distribution.
</summary>
<param name="mean">The mean of the distribution.</param>
<param name="stdDev">The standard deviation of the distribution.</param>
<returns>An array of 2 random variables drawn from the distribution.</returns>
</member>
<member name="T:NEA.Tensor.Tensor">
<summary>
A class representing a batch of matricies.
</summary>
</member>
<member name="P:NEA.Tensor.Tensor.Shape">
<summary>
The shape of the tensor in order [batches, matrix_rows, matrix_columns]
</summary>
</member>
<member name="M:NEA.Tensor.Tensor.#ctor(System.Int32,System.Int32,System.Int32)">
<summary>
Initialises an empty tensor with the specified number of rows, columns and batches.
</summary>
<param name="batches">The number of batches.</param>
<param name="rows">The number of rows.</param>
<param name="columns">The number of columns.</param>
</member>
<member name="P:NEA.Tensor.Tensor.Item(System.Int32)">
<summary>
Gets the batch at the specified index.
</summary>
<param name="idx">The index of the batch.</param>
<returns>A matrix representing the batch.</returns>
</member>
<member name="P:NEA.Tensor.Tensor.Item(System.Int32,System.Int32,System.Int32)">
<summary>
Gets the float at the specified index.
</summary>
<param name="batch">The batch index.</param>
<param name="row">The row index.</param>
<param name="col">The column index.</param>
<returns>The float value at the specified index.</returns>
</member>
<member name="M:NEA.Tensor.Tensor.GetItem(System.Int32)">
<summary>
Gets the batch at the specified index.
</summary>
<param name="idx">The index in the tensor.</param>
<returns>A matrix representing the batch.</returns>
<remarks>Deprecated code, will soon be removed.</remarks>
</member>
<member name="M:NEA.Tensor.Tensor.SetItem(System.Int32,NEA.Tensor.Matrix)">
<summary>
Sets the batch at the specified index.
</summary>
<param name="idx">The index of the batch.</param>
<param name="m">The matrix to set.</param>
<remarks>Deprecated code, will soon be removed.</remarks>
</member>
<member name="M:NEA.Tensor.Tensor.GetHashCode">
<summary>
Gets the hash value for this tensor.
</summary>
<returns>The hash value of this tensor.</returns>
</member>
<member name="M:NEA.Tensor.Tensor.Equals(System.Object)">
<summary>
Checks two objects are equal.
</summary>
<param name="obj">The object to compare this tensor to.</param>
<returns>A boolean equality value.</returns>
</member>
<member name="M:NEA.Tensor.Tensor.ToString">
<summary>
Generates a string representation of this tensor.
</summary>
<returns>A string representing this tensor.</returns>
</member>
<member name="M:NEA.Tensor.Tensor.Add(NEA.Tensor.Tensor)">
<summary>
Adds Tensor A to this Tensor.
</summary>
</member>
<member name="M:NEA.Tensor.Tensor.Add(NEA.Tensor.Matrix)">
<summary>
Adds Matrix A to this Tensor.
</summary>
</member>
<member name="M:NEA.Tensor.Tensor.Hadamard(NEA.Tensor.Tensor)">
<summary>
Performs a Hadamard (elementwise) multiplication on this Tensor.
</summary>
</member>
<member name="M:NEA.Tensor.Tensor.Hadamard(NEA.Tensor.Matrix)">
<summary>
Performs a Hadamard (elementwise) multiplication on this Tensor.
</summary>
</member>
<member name="M:NEA.Tensor.Tensor.Dot(NEA.Tensor.Tensor)">
<summary>
Calculates the dot product between the matricies contained in two tensors.
</summary>
<returns>An array of matrix dot products</returns>
</member>
<member name="M:NEA.Tensor.Tensor.Dot(NEA.Tensor.Matrix)">
<summary>
Calculates the dot product between the matricies contained in this tensor and matrix A.
</summary>
<returns>An array of matrix dot products.</returns>
</member>
<member name="M:NEA.Tensor.Tensor.Transform(NEA.Tensor.Tensor)">
<summary>
Performs a matrix transformation on the matricies contained in this tensor.
</summary>
</member>
<member name="M:NEA.Tensor.Tensor.Transform(NEA.Tensor.Matrix)">
<summary>
Performs a matrix transformation on the matricies contained in this tensor.
</summary>
</member>
<member name="M:NEA.Tensor.Tensor.Reshape(System.Int32,System.Int32)">
<summary>
Reshapes every matrix in the Tensor to the specified dimensions.
</summary>
</member>
<member name="M:NEA.Tensor.Tensor.Transpose">
<summary>
Transposes every matrix in the Tensor.
</summary>
</member>
<member name="M:NEA.Tensor.Tensor.ToArray">
<summary>
Returns the tensor as an array of 2d float arrays.
</summary>
</member>
<member name="T:NEA.Utils.Data.Batch">
<summary>
Stores the input and output tensors for a single batch of data.
</summary>
</member>
<member name="M:NEA.Utils.Data.Batch.#ctor(NEA.Tensor.Tensor,NEA.Tensor.Tensor)">
<summary>
Creates a new Batch.
</summary>
<param name="input">The input tensor.</param>
<param name="output">The corresponding output tensor.</param>
</member>
<member name="F:NEA.Utils.Data.Batch.input">
<summary>
A tensor of input samples.
</summary>
</member>
<member name="F:NEA.Utils.Data.Batch.output">
<summary>
A tensor of output samples.
</summary>
</member>
<member name="P:NEA.Utils.Data.Batch.BatchSize">
<summary>
The amount of items in this batch.
</summary>
</member>
<member name="T:NEA.Utils.Data.DataLoader">
<summary>
Data loader. Combines a dataset and a sampler, and provides an iterable over the given dataset.
</summary>
</member>
<member name="F:NEA.Utils.Data.DataLoader.TrainSet">
<summary>
The set of training data.
</summary>
</member>
<member name="F:NEA.Utils.Data.DataLoader.TestSet">
<summary>
The set of test data.
</summary>
</member>
<member name="F:NEA.Utils.Data.DataLoader.BatchSize">
<summary>
The number of samples in each batch.
</summary>
</member>
<member name="M:NEA.Utils.Data.DataLoader.#ctor(NEA.Utils.Data.DataSet,System.Int32,System.Int32[],System.Boolean,System.Int32,System.Boolean,System.Boolean,System.Single)">
<summary>
Initialises a new DataLoader object with the specified parameters.
Will always clean the dataset, regardless of whether or not it has already been cleaned.
</summary>
<param name="dataset">The cleaned dataset to load data from.</param>
<param name="batchSize">The size that each batch of data should take.</param>
<param name="targetVariable">The column index(es) of the target variable(s).</param>
<param name="oneHotTarget">Whether the target should be a one-hot vector. Default false</param>
<param name="nClasses">The total number of classes for a one-hot vector. Default 0.</param>
<param name="shuffle">Whether the dataset should be shuffled. Default true.</param>
<param name="split">Whether the dataset should be split into train and test. Default true.</param>
<param name="trainTestSplit">The proportion of the dataset that should be used as training data. Default 0.7.</param>
</member>
<member name="T:NEA.Utils.Data.DataSet">
<summary>
A class representing a dataset, as well as allowing basic data interactions.
</summary>
</member>
<member name="P:NEA.Utils.Data.DataSet.Count">
<summary>
The number of entries in the dataset
</summary>
</member>
<member name="P:NEA.Utils.Data.DataSet.Features">
<summary>
The number of features in the dataset
</summary>
</member>
<member name="M:NEA.Utils.Data.DataSet.#ctor">
<summary>
Creates a new empty instance of the dataset class
</summary>
</member>
<member name="M:NEA.Utils.Data.DataSet.#ctor(System.String,System.Boolean,System.Char)">
<summary>
Creates a new instance of the dataset, populating it with data from the specified path.
</summary>
<param name="path">The path of the target dataset. Should specify a *.csv file.</param>
<param name="dataAnnotations">Whether the target file has data annotations in the first line. Default false.</param>
<param name="delimiter">The character used to separate fields on each row of the file. Default comma.</param>
</member>
<member name="M:NEA.Utils.Data.DataSet.#ctor(System.Nullable{System.Single}[][])">
<summary>
Creates a dataset from a pre-populated nullable float array
</summary>
<param name="data">The data to populate the dataset with</param>
</member>
<member name="P:NEA.Utils.Data.DataSet.Item(System.Int32,System.Int32)">
<summary>
Specifies a value at the specified row and column index.
</summary>
<param name="row">The row index.</param>
<param name="column">The column index.</param>
<returns>The nullable float at the specified index.</returns>
</member>
<member name="P:NEA.Utils.Data.DataSet.Item(System.Int32)">
<summary>
Specifies a row at the specified index.
</summary>
<param name="index">The row index.</param>
<returns>The array of nullable floats at the specified index.</returns>
</member>
<member name="M:NEA.Utils.Data.DataSet.LoadData(System.String,System.Boolean,System.Char)">
<summary>
Loads data from the file at the specified path.
</summary>
<param name="path">The path of the target dataset. Should specify a *.csv file.</param>
<param name="dataAnnotations">Whether the target file has data annotations in the first line. Default false.</param>
<param name="delimiter">The character used to separate fields on each row of the file. Default comma.</param>
</member>
<member name="M:NEA.Utils.Data.DataSet.Clean">
<summary>
Removes all elements with invalid entries from the dataset. Return the amount of items removed.
</summary>
</member>
<member name="M:NEA.Utils.Data.DataSet.Shuffle">
<summary>
Performs a Fisher-Yates shuffle on the dataset
</summary>
</member>
<member name="M:NEA.Utils.Data.DataSet.RandomSample(System.Int32)">
<summary>
Selects a specified number of items from the dataset.
</summary>
<param name="nItems">The number of items to select.</param>
<returns>A random sample of items from the dataset.</returns>
</member>
<member name="M:NEA.Utils.Data.DataSet.RemoveFeature(System.Int32)">
<summary>
Removes the feature at the specified column index from every element in the dataset
</summary>
<param name="index">The column index of the feature to remove</param>
</member>
<member name="M:NEA.Utils.Data.DataSet.RemoveElementAt(System.Int32)">
<summary>
Removes a single item from the dataset at the specified index.
</summary>
<param name="index">The row index of the item to be removed.</param>
</member>
<member name="M:NEA.Utils.Data.DataSet.TrainTestSplit(System.Single)">
<summary>
Splits the dataset into a training dataset and a test dataset.
</summary>
<param name="trainTestSplit">The proportion of the dataset which should be test data</param>
<returns>A tuple of (trainingdata, testdata)</returns>
</member>
<member name="M:NEA.Utils.Data.DataSet.ToArray">
<summary>
Returns the contents of the dataset as a nullable float array.
</summary>
<returns></returns>
</member>
</members>
</doc>