diff --git a/Neural Networks and Deep Learning/Deep Neural Network - Application.ipynb b/Neural Networks and Deep Learning/Deep Neural Network - Application.ipynb index 79add884..a73c27d2 100644 --- a/Neural Networks and Deep Learning/Deep Neural Network - Application.ipynb +++ b/Neural Networks and Deep Learning/Deep Neural Network - Application.ipynb @@ -8,7 +8,7 @@ "\n", "When you finish this, you will have finished the last programming assignment of Week 4, and also the last programming assignment of this course! \n", "\n", - "You will use use the functions you'd implemented in the previous assignment to build a deep network, and apply it to cat vs non-cat classification. Hopefully, you will see an improvement in accuracy relative to your previous logistic regression implementation. \n", + "You will use the functions you'd implemented in the previous assignment to build a deep network, and apply it to cat vs non-cat classification. Hopefully, you will see an improvement in accuracy relative to your previous logistic regression implementation. \n", "\n", "**After this assignment you will be able to:**\n", "- Build and apply a deep neural network to supervised learning. \n", @@ -39,9 +39,7 @@ { "cell_type": "code", "execution_count": 1, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "import time\n", @@ -83,9 +81,7 @@ { "cell_type": "code", "execution_count": 2, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "train_x_orig, train_y, test_x_orig, test_y, classes = load_data()" @@ -101,9 +97,7 @@ { "cell_type": "code", "execution_count": 3, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -133,9 +127,7 @@ { "cell_type": "code", "execution_count": 4, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -180,9 +172,7 @@ { "cell_type": "code", "execution_count": 5, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -318,9 +308,7 @@ { "cell_type": "code", "execution_count": 7, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "# GRADED FUNCTION: two_layer_model\n", @@ -426,9 +414,7 @@ { "cell_type": "code", "execution_count": 8, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -513,9 +499,7 @@ { "cell_type": "code", "execution_count": 9, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -546,7 +530,6 @@ "cell_type": "code", "execution_count": 10, "metadata": { - "collapsed": false, "scrolled": true }, "outputs": [ @@ -626,9 +609,7 @@ { "cell_type": "code", "execution_count": 12, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "# GRADED FUNCTION: n_layer_model\n", @@ -709,7 +690,6 @@ "cell_type": "code", "execution_count": 13, "metadata": { - "collapsed": false, "scrolled": false }, "outputs": [ @@ -788,7 +768,6 @@ "cell_type": "code", "execution_count": 14, "metadata": { - "collapsed": false, "scrolled": true }, "outputs": [ @@ -823,9 +802,7 @@ { "cell_type": "code", "execution_count": 15, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -877,7 +854,6 @@ "cell_type": "code", "execution_count": 16, "metadata": { - "collapsed": false, "scrolled": false }, "outputs": [ @@ -926,7 +902,6 @@ "cell_type": "code", "execution_count": 17, "metadata": { - "collapsed": false, "scrolled": false }, "outputs": [ @@ -995,7 +970,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.2" + "version": "3.7.0" } }, "nbformat": 4,