-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_vua.py
456 lines (389 loc) · 15.5 KB
/
main_vua.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
from util import *
from util import TextDatasetWithGloveElmoSuffix as TextDataset
from model import RNNSequenceModel, Transformer
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
import pickle
from torch.utils.data import DataLoader
from tqdm import tqdm
import csv
import h5py
import ast
import numpy as np
import pandas as pd
import copy
import matplotlib.pyplot as plt
print("PyTorch version:")
print(torch.__version__)
print("GPU Detected:")
print(torch.cuda.is_available())
using_GPU = True
im = '1'
"""
1. Data pre-processing
"""
'''
1.1 VUA
get raw dataset as a list:
Each element is a triple:
a sentence: string
a list of labels:
a list of pos:
'''
pos_set = set()
raw_train_vua = []
ma = 0
option = 'vua'
TRAIN_PATH = './data/vua/VUA_corpus_train.csv'
VAL_PATH = './data/vua/VUA_corpus_val.csv'
TEST_PATH = './data/vua/VUA_corpus_test.csv'
ELMO_TRAIN_PATH = './data/vua/elmo_train.pkl'
ELMO_VAL_PATH = './data/vua/elmo_val.pkl'
ELMO_TEST_PATH = './data/vua/elmo_test.pkl'
ALL_POS_TOKENS = './data/vua/all_pos_test_tokens.pkl'
VERB_TOKENS = './data/vua/verb_test_tokens.pkl'
with open(TRAIN_PATH, encoding='latin-1') as f:
lines = csv.reader(f)
next(lines)
for line in lines:
pos_seq = ast.literal_eval(line[4])
ma = max(ma, len(pos_seq))
label_seq = ast.literal_eval(line[3])
assert (len(pos_seq) == len(label_seq))
assert (len(line[2].split()) == len(pos_seq))
raw_train_vua.append([line[2], label_seq, pos_seq, line[0], line[1]])
pos_set.update(pos_seq)
raw_val_vua = []
with open(VAL_PATH, encoding='latin-1') as f:
lines = csv.reader(f)
next(lines)
for line in lines:
pos_seq = ast.literal_eval(line[4])
ma = max(ma, len(pos_seq))
label_seq = ast.literal_eval(line[3])
assert (len(pos_seq) == len(label_seq))
assert (len(line[2].split()) == len(pos_seq))
raw_val_vua.append([line[2], label_seq, pos_seq, line[0], line[1]])
pos_set.update(pos_seq)
print('Maximum seq length: ', ma)
# embed the pos tags
pos2idx, idx2pos = get_pos2idx_idx2pos(pos_set)
# print(pos2idx)
for i in range(len(raw_train_vua)):
raw_train_vua[i][2] = index_sequence(pos2idx, raw_train_vua[i][2])
for i in range(len(raw_val_vua)):
raw_val_vua[i][2] = index_sequence(pos2idx, raw_val_vua[i][2])
print('size of training set, validation set: ', len(raw_train_vua), len(raw_val_vua))
"""
2. Data preparation
"""
'''
2. 1
get vocabulary and glove embeddings in raw dataset
'''
# vocab is a set of words
vocab, char_vocab = get_vocab(raw_train_vua)
try:
with open('/data/vua/char_vocab.pkl', 'rb') as f:
char_vocab = pickle.load(f)
except:
with open('/data/vua/char_vocab.pkl', 'wb+') as f:
pickle.dump(char_vocab, f)
# two dictionaries. <PAD>: 0, <UNK>: 1
word2idx, idx2word = get_word2idx_idx2word(vocab)
c2idx = get_c2idx(char_vocab)
# glove_embeddings a nn.Embeddings
glove_embeddings = get_embedding_matrix(word2idx, idx2word, name='vua', normalization=False)
# elmo_embeddings
with open(ELMO_TRAIN_PATH, 'rb') as f:
elmos_train_vua = pickle.load(f)
with open(ELMO_VAL_PATH, 'rb') as f:
elmos_val_vua = pickle.load(f)
with open(ELMO_TEST_PATH, 'rb') as f:
elmos_test_vua = pickle.load(f)
pos_vocab_size = len(pos2idx)
pos_embeddings = nn.Embedding(pos_vocab_size, 30)
'''
2. 2
embed the datasets
'''
# raw_train_vua: sentence, label_seq, pos_seq
# embedded_train_vua: embedded_sentence, pos, labels
embedded_train_vua = [[embed_indexed_sequence(example[3], example[4], example[0], example[2], word2idx,
glove_embeddings, elmos_train_vua, pos_embeddings),
example[2], example[1], get_char_indices(c2idx, example[0])]
for example in raw_train_vua]
embedded_val_vua = [[embed_indexed_sequence(example[3], example[4], example[0], example[2], word2idx,
glove_embeddings, elmos_val_vua, pos_embeddings),
example[2], example[1], get_char_indices(c2idx, example[0])]
for example in raw_val_vua]
'''
2. 3
set up Dataloader for batching
'''
# Separate the input (embedded_sequence) and labels in the indexed train sets.
# embedded_train_vua: embedded_sentence, pos, labels
train_dataset_vua = TextDataset([example[0] for example in embedded_train_vua],
[example[1] for example in embedded_train_vua],
[example[2] for example in embedded_train_vua],
[example[3] for example in embedded_train_vua])
val_dataset_vua = TextDataset([example[0] for example in embedded_val_vua],
[example[1] for example in embedded_val_vua],
[example[2] for example in embedded_val_vua],
[example[3] for example in embedded_val_vua])
# Data-related hyperparameters
batch_size = 4
# Set up a DataLoader for the training, validation, and test dataset
train_dataloader_vua = DataLoader(dataset=train_dataset_vua, batch_size=batch_size, shuffle=True,
collate_fn=TextDataset.collate_fn)
val_dataloader_vua = DataLoader(dataset=val_dataset_vua, batch_size=batch_size,
collate_fn=TextDataset.collate_fn)
"""
3. Model training
"""
'''
3. 1
set up model, loss criterion, optimizer
'''
# Instantiate the model
# embedding_dim = glove + elmo + suffix indicator
# dropout1: dropout on input to RNN
# dropout2: dropout in RNN; would be used if num_layers!=1
# dropout3: dropout on hidden state of RNN to linear layer
RNNseq_model = RNNSequenceModel(num_classes=2, embedding_dim=300+1024+250+30,
hidden_size=300, num_layers=1, bidir=True,
char_vocab_size=len(c2idx), char_embed_dim=50,
dropout1=0.5, dropout2=0, dropout3=0.1)
Transformer_model = Transformer(emb=300+1024+250+30, k=300, heads=1, depth=1,
num_classes=2, char_vocab_size=len(c2idx),
char_embed_dim=50)
transformer_parameters = sum(p.numel() for p in Transformer_model.parameters() if p.requires_grad)
rnn_parameters = sum(p.numel() for p in RNNseq_model.parameters() if p.requires_grad)
total_parameters = transformer_parameters + rnn_parameters
print(f'Number of parameters: {total_parameters}')
# Move the model to the GPU if available
if using_GPU:
RNNseq_model = RNNseq_model.cuda()
Transformer_model = Transformer_model.cuda()
# Set up criterion for calculating loss
weight_tensor = torch.Tensor([1.0, 2.0]).cuda()
loss_criterion = nn.NLLLoss(weight=weight_tensor)
rnn_optimizer = optim.Adam(RNNseq_model.parameters(), lr=0.005)
trans_optimizer = optim.Adam(Transformer_model.parameters(), lr=0.0001)
rnn_scheduler = optim.lr_scheduler.MultiStepLR(rnn_optimizer, milestones=[2,5], gamma=0.3)
trans_scheduler = optim.lr_scheduler.MultiStepLR(trans_optimizer, milestones=[2,5], gamma=0.3)
# Number of epochs (passes through the dataset) to train the model for.
num_epochs = 5
'''
3. 2
train model
'''
train_loss = []
val_loss = []
performance_matrix = None
val_f1s = []
train_f1s = []
# A counter for the number of gradient updates
num_iter = 0
comparable = []
bestf1 = 0
best_model_weights = [None, None]
best_optimizer_dict = [None, None]
for epoch in range(num_epochs):
print("Starting epoch {}".format(epoch + 1))
tp = 0
fp = 0
fn = 0
total_loss = 0
t = 0
for (pos_seqs, example_text, example_lengths, labels, pad_amounts, char_seqs) in train_dataloader_vua:
example_text = Variable(example_text)
example_lengths = Variable(example_lengths)
labels = Variable(labels)
pad_amounts = Variable(pad_amounts)
char_seqs = Variable(char_seqs)
if using_GPU:
example_text = example_text.cuda()
example_lengths = example_lengths.cuda()
labels = labels.cuda()
pad_amounts = pad_amounts.cuda()
char_seqs = char_seqs.cuda()
predicted1, embs1, p1 = RNNseq_model(example_text, example_lengths, char_seqs)
predicted2, embs2, p2 = Transformer_model(example_text, pad_amounts, char_seqs)
# combine predictions
# predicted = (predicted1 + predicted3)/2
p = (p1 + p2)/2
predicted = F.log_softmax(p, dim=-1)
total_batch_loss1 = loss_criterion(predicted1.view(-1, 2), labels.view(-1))
total_batch_loss2 = loss_criterion(predicted2.view(-1, 2), labels.view(-1))
total_los = loss_criterion(predicted.view(-1, 2), labels.view(-1))
# total_los = (total_batch_loss1 + total_batch_loss2)/2
rnn_optimizer.zero_grad()
trans_optimizer.zero_grad()
(total_batch_loss1).backward()
(total_batch_loss2).backward()
rnn_optimizer.step()
trans_optimizer.step()
num_iter += 1
total_loss += total_los
if num_iter % 1000 == 0:
avg_eval_loss, precision, recall, performance_matrix = evaluate(idx2pos, val_dataloader_vua,
loss_criterion, using_GPU, RNNseq_model, Transformer_model)
try:
val_f1 = 2*precision*recall/(precision+recall)
except:
val_f1 = 0
val_loss.append(avg_eval_loss)
val_f1s.append(performance_matrix[:, 2])
print("Iteration {}. Validation Loss {} Val F1 {}.".format(num_iter, avg_eval_loss, val_f1))
_, predicted_labels = torch.max(predicted.data, 2)
for i in range(len(pos_seqs)):
indexed_pos_sequence = pos_seqs[i]
prediction = predicted_labels[i]
label = labels.data[i]
for j in range(len(indexed_pos_sequence)):
indexed_pos = indexed_pos_sequence[j]
p = prediction[j]
l = label[j]
if p == l and p == 1:
tp += 1
elif p == 1 and l == 0:
fp += 1
elif p == 0 and l == 1:
fn += 1
try:
precis = tp/(tp + fp)
recal = tp/(tp + fn)
f1_score = 2*precis*recal/(precis+recal)
except:
f1_score = 0
train_f1s.append(f1_score)
los = (total_loss/train_dataloader_vua.__len__()).item()
train_loss.append(los)
rnn_scheduler.step()
trans_scheduler.step()
print("Epoch {}. Training Loss {} Train F1 {}.".format(epoch+1, los, f1_score))
_, precision, recall, _ = evaluate(idx2pos, val_dataloader_vua,
loss_criterion, using_GPU,
RNNseq_model, Transformer_model,
)
val_end_f1 = 2*precision*recall/(precision+recall)
if val_end_f1 > bestf1:
bestf1 = val_end_f1
best_model_weights[0] = copy.deepcopy(RNNseq_model.state_dict())
best_model_weights[1] = copy.deepcopy(Transformer_model.state_dict())
best_optimizer_dict[0] = copy.deepcopy(rnn_optimizer.state_dict())
best_optimizer_dict[1] = copy.deepcopy(trans_optimizer.state_dict())
RNNseq_model.load_state_dict(best_model_weights[0])
Transformer_model.load_state_dict(best_model_weights[1])
rnn_optimizer.load_state_dict(best_optimizer_dict[0])
trans_optimizer.load_state_dict(best_optimizer_dict[1])
torch.save({
'epoch': num_epochs,
'model_state_dict': best_model_weights,
'optimizer_state_dict':best_optimizer_dict,
}, './models/vua/model.tar')
"""
3.3
plot the training process: losses for validation and training dataset
"""
plt.figure(0)
plt.title('Loss for VUA dataset')
plt.xlabel('iteration (unit:1000)')
plt.ylabel('Loss')
plt.plot(val_loss, 'g')
plt.plot(train_loss, 'b')
plt.legend(['Validation loss', 'Training loss'], loc='upper right')
# plt.show()
plt.savefig(f'./graphs/vua/Loss_{im}.png')
plt.figure(1)
plt.title('Validation F1 for VUA dataset')
plt.xlabel('iteration (unit:1000)')
plt.ylabel('F1')
for i in range(len(idx2pos)):
plt.plot([x[i] for x in val_f1s])
plt.legend([idx2pos[i] for i in range(len(idx2pos))], loc='upper left')
plt.savefig(f'./graphs/vua/val_f1_{im}.png')
print("**********************************************************")
print("Evalutation on test set (new) (all pos): ")
raw_test_vua = []
with open(TEST_PATH, encoding='latin-1') as f:
lines = csv.reader(f)
next(lines)
for line in lines:
# txt_id sen_ix sentence label_seq pos_seq labeled_sentence genre
pos_seq = ast.literal_eval(line[4])
label_seq = ast.literal_eval(line[3])
assert(len(pos_seq) == len(label_seq))
assert(len(line[2].split()) == len(pos_seq))
raw_test_vua.append([line[2], label_seq, pos_seq, line[0], line[1]])
print('number of examples(sentences) for test_set ', len(raw_test_vua))
for i in range(len(raw_test_vua)):
raw_test_vua[i][2] = index_sequence(pos2idx, raw_test_vua[i][2])
embedded_test_vua = [[embed_indexed_sequence(example[3], example[4], example[0], example[2], word2idx,
glove_embeddings, elmos_test_vua, pos_embeddings),
example[2], example[1], get_char_indices(c2idx, example[0])]
for example in raw_test_vua]
ids = [[example[3], example[4], example[0], example[2]] for example in raw_test_vua]
# Separate the input (embedded_sequence) and labels in the indexed train sets.
# embedded_train_vua: embedded_sentence, pos, labels
test_dataset_vua = TextDataset([example[0] for example in embedded_test_vua],
[example[1] for example in embedded_test_vua],
[example[2] for example in embedded_test_vua],
[example[3] for example in embedded_test_vua])
# Set up a DataLoader for the test dataset
test_dataloader_vua = DataLoader(dataset=test_dataset_vua, batch_size=batch_size,
collate_fn=TextDataset.collate_fn)
preds, test_pos_seqs = evaluate(idx2pos, test_dataloader_vua, loss_criterion, using_GPU, RNNseq_model, Transformer_model, 'test')
with open(ALL_POS_TOKENS, 'rb') as f:
test_dic = pickle.load(f)
new_preds = []
new_ids = []
for i, arr in enumerate(ids):
id1 = arr[0]
id2 = arr[1]
try:
offsets = test_dic[id1][id2]
except:
continue
pred = preds[i]
new_pred = []
new_id = []
for o in offsets:
new_pred.append(pred[o])
new_id.append('_'.join([id1, id2, str(o+1)]))
assert len(new_pred) == len(offsets)
assert len(new_id) == len(offsets)
new_preds.extend(new_pred)
new_ids.extend(new_id)
test_predictions = [[i, p] for i, p in zip(new_ids, new_preds)]
df = pd.DataFrame(test_predictions)
df.to_csv('./predictions/' + option + '_all_pos_pred.csv', index=False, header=False)
print("Evalutation on test set (new) (only verb): ")
with open(VERB_TOKENS, 'rb') as f:
verb_test_dic = pickle.load(f)
new_preds = []
new_ids = []
for i, arr in enumerate(ids):
id1 = arr[0]
id2 = arr[1]
try:
offsets = verb_test_dic[id1][id2]
except:
continue
pred = preds[i]
new_pred = []
new_id = []
for o in offsets:
new_pred.append(pred[o])
new_id.append('_'.join([id1, id2, str(o+1)]))
assert len(new_pred) == len(offsets)
assert len(new_id) == len(offsets)
new_preds.extend(new_pred)
new_ids.extend(new_id)
test_predictions = [[i, p] for i, p in zip(new_ids, new_preds)]
df = pd.DataFrame(test_predictions)
df.to_csv('./predictions/' + option + '_verb_pred.csv', index=False, header=False)