-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest.py
130 lines (112 loc) · 4 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import argparse
import os
from copy import deepcopy
import numpy as np
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from data.dataset import PoisonLabelDataset
from data.utils import (
gen_poison_idx,
get_bd_transform,
get_dataset,
get_loader,
get_transform,
)
from model.model import LinearModel
from model.utils import (
get_criterion,
get_network,
load_state,
)
from utils.setup import (
get_logger,
get_saved_dir,
get_storage_dir,
load_config,
set_seed,
)
from utils.trainer.semi import linear_test
def main():
print("===Setup running===")
parser = argparse.ArgumentParser()
parser.add_argument("--config", default="./config/baseline_asd.yaml")
parser.add_argument("--gpu", default="0", type=str)
parser.add_argument(
"--resume",
default="",
type=str,
help="checkpoint name (empty string means the latest checkpoint)\
or False (means training from scratch).",
)
args = parser.parse_args()
config, inner_dir, config_name = load_config(args.config)
args.saved_dir, args.log_dir = get_saved_dir(
config, inner_dir, config_name, args.resume
)
args.storage_dir, args.ckpt_dir, _ = get_storage_dir(
config, inner_dir, config_name, args.resume
)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
gpu = 0
set_seed(**config["seed"])
logger = get_logger(args.log_dir, "asd_test.log", args.resume, gpu == 0)
torch.cuda.set_device(gpu)
logger.info("===Prepare data===")
bd_config = config["backdoor"]
logger.info("Load backdoor config:\n{}".format(bd_config))
bd_transform = get_bd_transform(bd_config)
target_label = bd_config["target_label"]
pre_transform = get_transform(config["transform"]["pre"])
train_primary_transform = get_transform(config["transform"]["train"]["primary"])
train_remaining_transform = get_transform(config["transform"]["train"]["remaining"])
train_transform = {
"pre": pre_transform,
"primary": train_primary_transform,
"remaining": train_remaining_transform,
}
logger.info("Training transformations:\n {}".format(train_transform))
test_primary_transform = get_transform(config["transform"]["test"]["primary"])
test_remaining_transform = get_transform(config["transform"]["test"]["remaining"])
test_transform = {
"pre": pre_transform,
"primary": test_primary_transform,
"remaining": test_remaining_transform,
}
logger.info("Test transformations:\n {}".format(test_transform))
logger.info("Load dataset from: {}".format(config["dataset_dir"]))
clean_test_data = get_dataset(
config["dataset_dir"], test_transform, train=False, prefetch=config["prefetch"]
)
poison_test_idx = gen_poison_idx(clean_test_data, target_label)
poison_test_data = PoisonLabelDataset(
clean_test_data, bd_transform, poison_test_idx, target_label
)
clean_test_loader = get_loader(clean_test_data, config["loader"])
poison_test_loader = get_loader(poison_test_data, config["loader"])
logger.info("\n===Setup training===")
backbone = get_network(config["network"])
logger.info("Create network: {}".format(config["network"]))
linear_model = LinearModel(backbone, backbone.feature_dim, config["num_classes"])
linear_model = linear_model.cuda(gpu)
criterion = get_criterion(config["criterion"])
criterion = criterion.cuda(gpu)
logger.info("Create criterion: {} for test".format(criterion))
logger.info("Create scheduler: {}".format(config["lr_scheduler"]))
load_state(
linear_model,
args.resume,
args.ckpt_dir,
gpu,
logger,
)
logger.info("Test model on clean data...")
linear_test(
linear_model, clean_test_loader, criterion, logger
)
logger.info("Test model on poison data...")
linear_test(
linear_model, poison_test_loader, criterion, logger
)
if __name__ == "__main__":
main()