Facing Out Of Memory issue for llama-13b model when trained on 4 gpus #3554
premanand09
started this conversation in
General
Replies: 0 comments
# for free
to join this conversation on GitHub.
Already have an account?
# to comment
-
Hi,
I am trying to train llama-13b model on 4 gpu's each of size around 15360MiB. total size of GPU is around 61GB.
After launching the training, i am facing OOM issue for GPU. Ideally model should fit on these GPU memories. Any help here please.
│ 795 │ def _apply(self, fn): │
│ 796 │ │ for module in self.children(): │
│ ❱ 797 │ │ │ module._apply(fn) │
│ 798 │ │ │
│ 799 │ │ def compute_should_use_set_data(tensor, tensor_applied): │
│ 800 │ │ │ if torch._has_compatible_shallow_copy_type(tensor, tensor_applied): │
│ │
│ /opt/conda/envs/pytorch/lib/python3.10/site-packages/torch/nn/modules/module.py:820 in _apply │
│ │
│ 817 │ │ │ # track autograd history of param_applied, so we have to use │
│ 818 │ │ │ # with torch.no_grad(): │
│ 819 │ │ │ with torch.no_grad(): │
│ ❱ 820 │ │ │ │ param_applied = fn(param) │
│ 821 │ │ │ should_use_set_data = compute_should_use_set_data(param, param_applied) │
│ 822 │ │ │ if should_use_set_data: │
│ 823 │ │ │ │ param.data = param_applied │
│ │
│ /opt/conda/envs/pytorch/lib/python3.10/site-packages/torch/nn/modules/module.py:1143 in convert │
│ │
│ 1140 │ │ │ if convert_to_format is not None and t.dim() in (4, 5): │
│ 1141 │ │ │ │ return t.to(device, dtype if t.is_floating_point() or t.is_complex() els │
│ 1142 │ │ │ │ │ │ │ non_blocking, memory_format=convert_to_format) │
│ ❱ 1143 │ │ │ return t.to(device, dtype if t.is_floating_point() or t.is_complex() else No │
│ 1144 │ │ │
│ 1145 │ │ return self._apply(convert) │
│ 1146 │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
OutOfMemoryError: CUDA out of memory. Tried to allocate 136.00 MiB (GPU 0; 14.75 GiB total capacity; 14.16 GiB already allocated; 40.81
MiB free; 14.16 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid
fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
Here is the command i am using :
deepspeed model/model_training/trainer_sft.py --local_rank=0 --configs defaults llama-13b-pretrain pretrain --cache_dir data_cache --output_dir saved_models/llama-13b-super-pretrain --deepspeed --show_dataset_stats --wandb_entity premnayar4
Here is the llama-13b-pretrain config:
llama-13b-pretrain:
dtype: fp16
log_dir: "llama_log_13b"
learning_rate: 1e-5
model_name: saved_models/llama-13B-hf-weights
output_dir: saved_models/llama-13b-super-pretrain
deepspeed_config: model/model_training/configs/zero_config_pretrain.json
weight_decay: 0.0
residual_dropout: 0.0
max_length: 2048
use_flash_attention: true
warmup_steps: 100
gradient_checkpointing: true
gradient_accumulation_steps: 4
per_device_train_batch_size: 4
per_device_eval_batch_size: 8
eval_steps: 200
save_steps: 500
num_train_epochs: 1
save_total_limit: 2
Here is the deepspeed config i am using below:
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto",
"warmup_type": "linear"
}
},
"zero_optimization": {
"stage": 2,
"allgather_partitions": true,
"allgather_bucket_size": 1e9,
"overlap_comm": false,
"reduce_scatter": true,
"reduce_bucket_size": 1e9,
"contiguous_gradients": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 2000,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}
Beta Was this translation helpful? Give feedback.
All reactions