-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathops.py
417 lines (326 loc) · 18.2 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import tensorflow as tf
from tensorflow.keras.layers import Conv2D, Dense
from tensorflow.keras.layers import Wrapper
weight_regularizer = None #orthogonal_regularizer(0.0001)
weight_regularizer_fully = None
class SpectralNormalization(Wrapper): # Wrapper takes another layer and argument it
"""
Attributes:
layer: tensorflow keras layers (with kernel attribute)
"""
def __init__(self, layer, config, **kwargs):
super(SpectralNormalization, self).__init__(layer, **kwargs) # inherits the properties from wrapper,
# including layers and kwargs.
self.device = config.device
def build(self, input_shape):
"""Build `Layer`"""
with tf.device('{}:*'.format(self.device)):
if not self.layer.built:
self.layer.build(input_shape)
if not hasattr(self.layer, 'kernel'):
raise ValueError(
'`SpectralNormalization` must wrap a layer that'
' contains a `kernel` for weights')
self.w = self.layer.kernel
self.w_shape = self.w.shape.as_list()
self.u = self.add_weight(
shape=tuple([1, self.w_shape[-1]]),
initializer=tf.keras.initializers.TruncatedNormal(stddev=0.02),
name='sn_u',
trainable=False,
dtype=tf.float32)
super(SpectralNormalization, self).build() # inherits the build method from wrappers.
def call(self, inputs):
"""Call `Layer`"""
self._compute_weights()
output = self.layer(inputs)
return output
def _compute_weights(self):
"""Generate normalized weights.
This method will update the value of self.layer.kernel with the
normalized value, so that the layer is ready for call().
"""
w_reshaped = tf.reshape(self.w, [-1, self.w_shape[-1]])
eps = 1e-12
_u = tf.identity(self.u)
_v = tf.matmul(_u, tf.transpose(w_reshaped))
_v = tf.nn.l2_normalize(_v, epsilon=eps)
_u = tf.matmul(_v, w_reshaped) # Finally, we get dimensionality of [1,self.w_shape[-1]
_u = tf.nn.l2_normalize(_u,epsilon=eps)
# Stop gradient
_u = tf.stop_gradient(_u)
_v = tf.stop_gradient(_v)
self.u.assign(_u)
sigma = tf.matmul(tf.matmul(_v, w_reshaped), tf.transpose(_u))
self.layer.kernel = self.w / sigma
def compute_output_shape(self, input_shape):
return tf.TensorShape(
self.layer.compute_output_shape(input_shape).as_list()) # Return a output shape.
class Attention(tf.keras.Model):
'https://stackoverflow.com/questions/50819931/self-attention-gan-in-keras'
def __init__(self, ch, config):
super(Attention, self).__init__()
self.filters_f_g_h = ch // 8
self.filters_v = ch
self.f_l = SpectralNormalization(tf.keras.layers.Conv2D(filters=self.filters_f_g_h, kernel_size=1, strides=1, use_bias=True), config=config)
self.g_l = SpectralNormalization(tf.keras.layers.Conv2D(filters=self.filters_f_g_h, kernel_size=1, strides=1, use_bias=True), config=config)
self.h_l = SpectralNormalization(tf.keras.layers.Conv2D(filters=self.filters_f_g_h, kernel_size=1, strides=1, use_bias=True), config=config)
self.v_l = SpectralNormalization(tf.keras.layers.Conv2D(filters=self.filters_v, kernel_size=1, strides=1, use_bias=True), config=config)
self.gamma = tf.Variable(initial_value=[0], dtype=tf.float32, trainable=True)
def __call__(self, inputs, training=False):
def hw_flatten(x):
return tf.reshape(x, shape=[tf.shape(x)[0], tf.shape(x)[1]*tf.shape(x)[2], tf.shape(x)[-1]])
f = self.f_l(inputs)
g = self.g_l(inputs)
h = self.h_l(inputs)
s = tf.matmul(hw_flatten(g), hw_flatten(f), transpose_b=True) # # [bs, N, N]
beta = tf.nn.softmax(s, axis=-1) # attention map
v = tf.matmul(beta, hw_flatten(h))
v = tf.reshape(v, shape=[inputs.get_shape().as_list()[0],inputs.get_shape().as_list()[1],inputs.get_shape().as_list()[2], -1]) # [bs, h, w, C]
o = self.v_l(v)
output = self.gamma * o + inputs
return output
class resblock(tf.keras.Model):
def __init__(self, channels, config, weight_init, use_bias=True):
super().__init__()
with tf.name_scope('resblock'):
self.conv0 = SpectralNormalization(Conv2D(filters=channels,
kernel_size=3,
strides=1,
padding='SAME',
use_bias=use_bias,
kernel_initializer=weight_init), config=config)
self.conv1 = SpectralNormalization(Conv2D(filters=channels,
kernel_size=3,
strides=1,
padding='SAME',
use_bias=use_bias,
kernel_initializer=weight_init), config=config)
def __call__(self, inputs, training=False):
# res1
x = self.conv0(inputs)
x = tf.nn.relu(x)
# res2
x = self.conv1(x)
return x+inputs
class resblock_up_condition_top(tf.keras.Model):
def __init__(self, channels, config, weight_init, use_bias=True):
super().__init__()
with tf.name_scope('resblock_up_condition_top'):
self.cond_batchnorm0 = condition_batch_norm(channels=channels, weight_init=weight_init)
self.upsampling = tf.keras.layers.UpSampling2D()
self.conv1 = SpectralNormalization(Conv2D(filters=channels,
kernel_size=3,
strides=1,
padding='SAME',
use_bias=use_bias,
kernel_initializer= weight_init,
kernel_regularizer= weight_regularizer), config=config)
self.cond_batchnorm1 = condition_batch_norm(channels=channels, weight_init=weight_init)
self.conv2 = SpectralNormalization(Conv2D(filters=channels,
kernel_size=3,
strides=1,
padding='SAME',
use_bias=use_bias,
kernel_initializer= weight_init,
kernel_regularizer= weight_regularizer), config=config)
self.skip_conv = SpectralNormalization(Conv2D(filters=channels,
kernel_size=1,
strides=1,
padding='SAME',
use_bias=use_bias,
kernel_initializer= weight_init,
kernel_regularizer= weight_regularizer), config=config)
def __call__(self, inputs, z, training=False):
# res1
x = self.cond_batchnorm0(inputs, z, training=training)
x = tf.nn.relu(x)
x = self.upsampling(x)
x = self.conv1(x)
# res2
x = self.cond_batchnorm1(x, z, training=training)
x = tf.nn.relu(x)
x = self.conv2(x)
# skip
x_init = self.upsampling(inputs)
x_init = self.skip_conv(x_init)
return x + x_init
class resblock_up_condition(tf.keras.Model):
def __init__(self, channels, config, weight_init, use_bias=True):
super().__init__()
with tf.name_scope('resblock_up_condition'):
self.cond_batchnorm0 = condition_batch_norm(channels=channels * 2, weight_init=weight_init)
self.upsampling = tf.keras.layers.UpSampling2D()
self.conv1 = SpectralNormalization(Conv2D(filters=channels,
kernel_size=3,
strides=1,
padding='SAME',
use_bias=use_bias,
kernel_initializer= weight_init,
kernel_regularizer= weight_regularizer), config)
self.cond_batchnorm1 = condition_batch_norm(channels=channels, weight_init=weight_init)
self.conv2 = SpectralNormalization(Conv2D(filters=channels,
kernel_size=3,
strides=1,
padding='SAME',
use_bias=use_bias,
kernel_initializer= weight_init,
kernel_regularizer= weight_regularizer), config)
self.skip_conv = SpectralNormalization(Conv2D(filters=channels,
kernel_size=1,
strides=1,
padding='SAME',
use_bias=use_bias,
kernel_initializer= weight_init,
kernel_regularizer= weight_regularizer), config)
def __call__(self, inputs, z, training=False):
# res1
x = self.cond_batchnorm0(inputs, z, training=training)
x = tf.nn.relu(x)
x = self.upsampling(x)
x = self.conv1(x)
# res2
x = self.cond_batchnorm1(x, z, training=training)
x = tf.nn.relu(x)
x = self.conv2(x)
# skip
x_init = self.upsampling(inputs)
x_init = self.skip_conv(x_init)
return x + x_init
class resblock_down(tf.keras.Model):
def __init__(self, channels, config, weight_init, use_bias=True):
super().__init__()
with tf.name_scope('resblock_down'):
self.conv0 = SpectralNormalization(Conv2D(filters=channels,
kernel_size=3,
strides=1,
padding='SAME',
use_bias=use_bias,
kernel_initializer=weight_init), config=config)
self.conv1 = SpectralNormalization(Conv2D(filters=channels,
kernel_size=3,
strides=1,
padding='SAME',
use_bias=use_bias,
kernel_initializer=weight_init), config=config)
self.skip_conv = SpectralNormalization(Conv2D(filters=channels,
kernel_size=1,
strides=1,
padding='SAME',
use_bias=use_bias,
kernel_initializer=weight_init), config=config)
self.avg_pooling = tf.keras.layers.AveragePooling2D(padding='SAME')
def __call__(self, inputs, training=False):
# res1
x = tf.nn.relu(inputs)
x = self.conv0(x)
# res2
x = tf.nn.relu(x)
x = self.conv1(x)
x = self.avg_pooling(x)
# skip
x_init = self.skip_conv(inputs)
x_init = self.avg_pooling(x_init)
return x + x_init
class resblock_dense(tf.keras.Model):
def __init__(self, units, weight_init, config):
super().__init__()
with tf.name_scope('resblock_dense'):
self.dense0 = SpectralNormalization(Dense(units=units, kernel_initializer= weight_init), config=config)
self.dropout = tf.keras.layers.Dropout(0.2)
self.dense1 = SpectralNormalization(Dense(units=units, kernel_initializer= weight_init), config=config)
self.dense_skip = SpectralNormalization(Dense(units=units, kernel_initializer=weight_init), config=config)
#@tf.function
def __call__(self, inputs, training=False):
l1 = self.dense0(inputs)
l1 = self.dropout(l1, training=training)
l1 = tf.nn.leaky_relu(l1)
l2 = self.dense1(l1)
l2 = self.dropout(l2, training=training)
l2 = tf.nn.leaky_relu(l2)
skip = self.dense_skip(inputs)
skip = tf.nn.leaky_relu(skip)
output = l2+skip
return output
class resblock_dense_no_sn(tf.keras.Model):
def __init__(self, units, weight_init):
super().__init__()
with tf.name_scope('resblock_dense_no_sn'):
self.dense0 = Dense(units=units, kernel_initializer=weight_init)
self.dropout = tf.keras.layers.Dropout(0.2)
self.dense1 = Dense(units=units, kernel_initializer=weight_init)
self.dense_skip = Dense(units=units, kernel_initializer=weight_init)
def __call__(self, inputs, training=False):
l1 = self.dense0(inputs)
l1 = self.dropout(l1, training=training)
l1 = tf.nn.leaky_relu(l1)
l2 = self.dense1(l1)
l2 = self.dropout(l2, training=training)
l2 = tf.nn.leaky_relu(l2)
skip = self.dense_skip(inputs)
skip = tf.nn.leaky_relu(skip)
output = l2+skip
return output
class bottleneck_s(tf.keras.Model):
def __init__(self, filters, weight_init, strides=1):
super().__init__()
self.filters = filters
self.strides = strides
self.bn0 = tf.keras.layers.BatchNormalization()
self.conv0 = tf.keras.layers.Conv2D(filters=filters, kernel_size=3, padding='SAME', use_bias=False, kernel_initializer=weight_init)
self.bn1 = tf.keras.layers.BatchNormalization()
self.conv1 = tf.keras.layers.Conv2D(filters=filters, kernel_size=3, padding='SAME', strides=strides, use_bias=False,kernel_initializer=weight_init)
self.skip_conv = tf.keras.layers.Conv2D(filters=filters, kernel_size=3, strides=strides, padding='SAME', kernel_initializer=weight_init)
def __call__(self, inputs, training=False):
l1 = self.conv0(inputs)
l1 = self.bn0(l1, training=training)
l1 = tf.nn.relu(l1)
l2 = self.conv1(l1)
l2 = self.bn1(l2, training=training)
l2 = tf.nn.relu(l2)
# Project input if necessary
if (self.strides > 1) or (self.filters != inputs.get_shape().as_list()[-1]):
x_shortcut = self.skip_conv(inputs)
else:
x_shortcut = inputs
return l2 + x_shortcut
class bottleneck_rev_s(tf.keras.Model):
def __init__(self, ch, weight_init, strides=1):
super().__init__()
self.unit = bottleneck_s(filters=ch//2, strides=strides, weight_init=weight_init)
def __call__(self, inputs, training=False):
# split with 2 parts and along axis=3
x1, x2 = tf.split(inputs, 2, 3)
y1 = x1 + self.unit(x2, training=training)
y2 = x2
# concatenate y2 and y1 along axis=3
return tf.concat([y2, y1], axis=3)
def pool_and_double_channels(x, pool_stride):
if pool_stride > 1:
x = tf.nn.avg_pool2d(x, ksize=pool_stride,
strides=pool_stride,
padding='SAME')
return tf.pad(x, [[0, 0], [0, 0], [0, 0],
[x.get_shape().as_list()[3] // 2, x.get_shape().as_list()[3] // 2]])
class condition_batch_norm(tf.keras.Model):
def __init__(self, channels, weight_init):
super().__init__()
self.channels = channels
self.decay = 0.9
self.epsilon = 1e-05
self.test_mean = tf.Variable(tf.zeros([channels]), dtype=tf.float32, trainable=False)
self.test_var = tf.Variable(tf.ones([channels]), dtype=tf.float32, trainable=False)
self.beta0 = tf.keras.layers.Dense(units=channels, use_bias=True, kernel_initializer=weight_init, kernel_regularizer= weight_regularizer_fully)
self.gamma0 = tf.keras.layers.Dense(units=channels, use_bias=True, kernel_initializer=weight_init, kernel_regularizer= weight_regularizer_fully)
def __call__(self, x, z, training=False):
beta0 = self.beta0(z)
gamma0 = self.gamma0(z)
beta = tf.reshape(beta0, shape=[-1, 1, 1, self.channels])
gamma = tf.reshape(gamma0, shape=[-1, 1, 1, self.channels])
if training:
batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2])
self.test_mean.assign(self.test_mean * self.decay + batch_mean * (1 - self.decay))
self.test_var.assign(self.test_var * self.decay + batch_var * (1 - self.decay))
return tf.nn.batch_normalization(x, batch_mean, batch_var, beta, gamma, self.epsilon)
else:
return tf.nn.batch_normalization(x, self.test_mean, self.test_var, beta, gamma, self.epsilon)