forked from muhanzhang/pytorch_DGCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
154 lines (135 loc) · 6.88 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from __future__ import print_function
import numpy as np
import random
from tqdm import tqdm
import os
#import cPickle as cp
#import _pickle as cp # python3 compatability
import networkx as nx
import pdb
import argparse
cmd_opt = argparse.ArgumentParser(description='Argparser for graph_classification')
cmd_opt.add_argument('-mode', default='cpu', help='cpu/gpu')
cmd_opt.add_argument('-gm', default='DGCNN', help='gnn model to use')
cmd_opt.add_argument('-data', default=None, help='data folder name')
cmd_opt.add_argument('-batch_size', type=int, default=50, help='minibatch size')
cmd_opt.add_argument('-seed', type=int, default=1, help='seed')
cmd_opt.add_argument('-feat_dim', type=int, default=0, help='dimension of discrete node feature (maximum node tag)')
cmd_opt.add_argument('-edge_feat_dim', type=int, default=0, help='dimension of edge features')
cmd_opt.add_argument('-num_class', type=int, default=0, help='#classes')
cmd_opt.add_argument('-fold', type=int, default=1, help='fold (1..10)')
cmd_opt.add_argument('-test_number', type=int, default=0, help='if specified, will overwrite -fold and use the last -test_number graphs as testing data')
cmd_opt.add_argument('-num_epochs', type=int, default=1000, help='number of epochs')
cmd_opt.add_argument('-latent_dim', type=str, default='64', help='dimension(s) of latent layers')
cmd_opt.add_argument('-sortpooling_k', type=float, default=30, help='number of nodes kept after SortPooling')
cmd_opt.add_argument('-conv1d_activation', type=str, default='ReLU', help='which nn activation layer to use')
cmd_opt.add_argument('-out_dim', type=int, default=1024, help='graph embedding output size')
cmd_opt.add_argument('-hidden', type=int, default=100, help='dimension of mlp hidden layer')
cmd_opt.add_argument('-max_lv', type=int, default=4, help='max rounds of message passing')
cmd_opt.add_argument('-learning_rate', type=float, default=0.0001, help='init learning_rate')
cmd_opt.add_argument('-dropout', type=bool, default=False, help='whether add dropout after dense layer')
cmd_opt.add_argument('-printAUC', type=bool, default=False, help='whether to print AUC (for binary classification only)')
cmd_opt.add_argument('-extract_features', type=bool, default=False, help='whether to extract final graph features')
cmd_args, _ = cmd_opt.parse_known_args()
cmd_args.latent_dim = [int(x) for x in cmd_args.latent_dim.split('-')]
if len(cmd_args.latent_dim) == 1:
cmd_args.latent_dim = cmd_args.latent_dim[0]
class GNNGraph(object):
def __init__(self, g, label, node_tags=None, node_features=None):
'''
g: a networkx graph
label: an integer graph label
node_tags: a list of integer node tags
node_features: a numpy array of continuous node features
'''
self.num_nodes = len(node_tags)
self.node_tags = node_tags
self.label = label
self.node_features = node_features # numpy array (node_num * feature_dim)
self.degs = list(dict(g.degree).values())
if len(g.edges()) != 0:
x, y = zip(*g.edges())
self.num_edges = len(x)
self.edge_pairs = np.ndarray(shape=(self.num_edges, 2), dtype=np.int32)
self.edge_pairs[:, 0] = x
self.edge_pairs[:, 1] = y
self.edge_pairs = self.edge_pairs.flatten()
else:
self.num_edges = 0
self.edge_pairs = np.array([])
# see if there are edge features
self.edge_features = None
if nx.get_edge_attributes(g, 'features'):
# make sure edges have an attribute 'features' (1 * feature_dim numpy array)
edge_features = nx.get_edge_attributes(g, 'features')
assert(type(edge_features.values()[0]) == np.ndarray)
# need to rearrange edge_features using the e2n edge order
edge_features = {(min(x, y), max(x, y)): z for (x, y), z in edge_features.items()}
keys = sorted(edge_features)
self.edge_features = []
for edge in keys:
self.edge_features.append(edge_features[edge])
self.edge_features.append(edge_features[edge]) # add reversed edges
self.edge_features = np.concatenate(self.edge_features, 0)
def load_data():
print('loading data')
g_list = []
label_dict = {}
feat_dict = {}
with open('data/%s/%s.txt' % (cmd_args.data, cmd_args.data), 'r') as f:
n_g = int(f.readline().strip())
for i in range(n_g):
row = f.readline().strip().split()
n, l = [int(w) for w in row]
if not l in label_dict:
mapped = len(label_dict)
label_dict[l] = mapped
g = nx.Graph()
node_tags = []
node_features = []
n_edges = 0
for j in range(n):
g.add_node(j)
row = f.readline().strip().split()
tmp = int(row[1]) + 2
if tmp == len(row):
# no node attributes
row = [int(w) for w in row]
attr = None
else:
row, attr = [int(w) for w in row[:tmp]], np.array([float(w) for w in row[tmp:]])
if not row[0] in feat_dict:
mapped = len(feat_dict)
feat_dict[row[0]] = mapped
node_tags.append(feat_dict[row[0]])
if attr is not None:
node_features.append(attr)
n_edges += row[1]
for k in range(2, len(row)):
g.add_edge(j, row[k])
if node_features != []:
node_features = np.stack(node_features)
node_feature_flag = True
else:
node_features = None
node_feature_flag = False
#assert len(g.edges()) * 2 == n_edges (some graphs in COLLAB have self-loops, ignored here)
assert len(g) == n
g_list.append(GNNGraph(g, l, node_tags, node_features))
for g in g_list:
g.label = label_dict[g.label]
cmd_args.num_class = len(label_dict)
cmd_args.feat_dim = len(feat_dict) # maximum node label (tag)
cmd_args.edge_feat_dim = 0
if node_feature_flag == True:
cmd_args.attr_dim = node_features.shape[1] # dim of node features (attributes)
else:
cmd_args.attr_dim = 0
print('# classes: %d' % cmd_args.num_class)
print('# maximum node tag: %d' % cmd_args.feat_dim)
if cmd_args.test_number == 0:
train_idxes = np.loadtxt('data/%s/10fold_idx/train_idx-%d.txt' % (cmd_args.data, cmd_args.fold), dtype=np.int32).tolist()
test_idxes = np.loadtxt('data/%s/10fold_idx/test_idx-%d.txt' % (cmd_args.data, cmd_args.fold), dtype=np.int32).tolist()
return [g_list[i] for i in train_idxes], [g_list[i] for i in test_idxes]
else:
return g_list[: n_g - cmd_args.test_number], g_list[n_g - cmd_args.test_number :]