-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinput_file.m
167 lines (153 loc) · 3.9 KB
/
input_file.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% layers structure %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% first column is the conduction band offset in eV
% second column is the length of the layer in nm
% third column is the n doping volumique of that layer in 1e18cm-3
% You have to put a resonable amount of doping! Otherwise, it will diverge
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% superlattice
% GaAs=0;
% AlGaAs40=0.36;
% meff = 0.067;
% Epsi = 10;
%
% M=[
% GaAs 20 2 % contact on the left
% GaAs 150 0 % spacer
%
% AlGaAs40 10 0.5
% GaAs 10 0
% AlGaAs40 10 0.5
% GaAs 10 0
% AlGaAs40 10 0.5
% GaAs 10 0
% AlGaAs40 10 0.5
% GaAs 10 0
% AlGaAs40 10 0.5
% GaAs 10 0
% AlGaAs40 10 0.5
%
% GaAs 150 0 % spacer
% GaAs 20 1 % contact on the right
% ];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% superlattice with Schottky contact
% GaAs=0;
% AlGaAs40=0.36;
% meff = 0.067;
% Epsi = 10;
%
% M=[
% GaAs 20 0 % contact on the left
% GaAs 150 0 % spacer
%
% AlGaAs40 10 0.1
% GaAs 10 0
% AlGaAs40 10 0.1
% GaAs 10 0
% AlGaAs40 10 0.1
% GaAs 10 0
% AlGaAs40 10 0.1
% GaAs 10 0
% AlGaAs40 10 0.1
% GaAs 10 0
% AlGaAs40 10 0.1
%
% GaAs 150 0 % spacer
% GaAs 20 1 % contact on the right
% ];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Coupled Quantum wells
% InGaAs=0;
% AlInAs=0.52;
% AlInAs2=0.2;
% meff = 0.042;
% Epsi = 10;
%
% M=[
% InGaAs 20 1 % contact on the left
% InGaAs 50 0 % spacer
%
% AlInAs 5 0
% AlInAs 1 5
% AlInAs 5 0
% InGaAs 8 0
% AlInAs 3 0
% InGaAs 20 0
% AlInAs 5 0
% AlInAs 1 5
% AlInAs 5 0
%
% InGaAs 50 0 % spacer
% InGaAs 20 1 % contact on the right
% ];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
InGaAs=-0.2;
GaAs=0;
meff = 0.05;
Epsi = 10;
M=[
GaAs 50 1 % contact on the left
GaAs 70 0 % spacer
GaAs 10 0
GaAs 1 1
GaAs 5 0
InGaAs 20 0
GaAs 5 0
GaAs 1 1
GaAs 10 0
GaAs 70 0 % spacer
GaAs 50 1 % contact on the right
];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GaN = 0;
% AlN = 1.8;
% meff = 0.22;
% Epsi = 10;
% DF = 10; % Electrical field discontinuity [MV/cm]
%
% Lb = 1; % barrier thickness [nm]
% Lw = 1; % well thickness [nm]
% Ls = 0.05; % doping spike thickness [nm] (in order to get the E-field)
%
% Fb = +DF*(Lw+2*Ls)/(Lw+Lb+4*Ls)*1e6*1e2; %[V/m]
% Fw = -DF*(Lb+2*Ls)/(Lw+Lb+4*Ls)*1e6*1e2; %[V/m]
%
% dopS = DF*1e6*1e2*Epsi*Epsi0/e; % charge/m2 MUST BE added on the interface for GaN/AlN for Wurtzite
% dopV = dopS/(Ls*1e-9); % charge/m3
% dopV = dopV*1e-6*1e-18; % charge 1e18cm-3
%
%
% M=[
%
% GaN 10 50 % contact on the left
% GaN 10 0 % spacer
%
% GaN Ls +dopV
% AlN Lb 0
% GaN Ls -dopV
% GaN Lw 5
% GaN Ls +dopV
% AlN Lb 0
% GaN Ls -dopV
% GaN Lw 5
% GaN Ls +dopV
% AlN Lb 0
% GaN Ls -dopV
% GaN Lw 5
% GaN Ls +dopV
% AlN Lb 0
% GaN Ls -dopV
% GaN Lw 5
% GaN Ls +dopV
% AlN Lb 0
% GaN Ls -dopV
% GaN Lw 5
% GaN Ls +dopV
% AlN Lb 0
% GaN Ls -dopV
%
% GaN 10 0 % spacer
% GaN 10 50 % contact on the right
% ];