-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCode.R
335 lines (307 loc) · 18.4 KB
/
Code.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
##################################################################################################################################
##################################################################################################################################
## ##
## ANSWER TO QUESTION 1 ##
## ##
##################################################################################################################################
##################################################################################################################################
# install.packages("haven")
# library(haven)
# salary <- as.data.frame(read_sav(file))
file <- "D:\\Lefteris files\\Documents\\Business Analytics\\1. Fall Semester\\Statistics for BA I\\Assignments\\Lab_Assignments\\salary.sav"
# install.packages("foreign")
library(foreign)
salary <- read.spss(file, to.data.frame=TRUE)
str(salary)
# salary is a data frame containing 474 observations of the following 11 variables:
# id, a numeric vector, labeled as employee code
# salbeg, a numeric vector, labeled as beginning salary
# sex, a factor, labeled as sex of employee, with two levels: 0 as males and 1 as females
# time, a numeric vector, labeled as job seniority
# age, a numeric vector, labeled as age of employee
# salnow, a numeric vector, labeled as current salary
# edlevel, a numeric vector, labeled as educational level (not clear though what value depicts which educational level)
# work, a numeric vector, labeled as work experience
# jobcat, a factor, labeled as employment category, with the following seven levels:
# value level
# 1 CLERICAL
# 2 OFFICE TRAINEE
# 3 SECURITY OFFICER
# 4 COLLEGE TRAINEE
# 5 EXEMPT EMPLOYEE
# 6 MBA TRAINEE
# 7 TECHNICAL
# minority, a factor, labeled as minority classification, with two levels: 0 as white and 1 as nonwhite
# sexrace, a factor, labeled as sex & race classification, with the following four levels:
# value level
# 1 WHITE MALES
# 2 MINORITY MALES
# 3 WHITE FEMALES
# 4 MINORITY FEMALES
##################################################################################################################################
##################################################################################################################################
## ##
## ANSWER TO QUESTION 2 ##
## ##
##################################################################################################################################
##################################################################################################################################
# Id, although numeric, is not statistically significant to be visualized as every employee has a unique id in ascending order.
nums <- sapply(salary,class)=='numeric'
nums[1] <- FALSE
salary.num <- salary[,nums]
summary <- summary(salary.num)
# install.packages("psych")
library(psych)
describe <- round(t(describe(salary.num)),2)
# Histogram and Q-Q plot of a normal distribution (rnorm)
# Normal (or Gaussian) distribution is a type of continuous probability distribution for a real-valued random variable
# 1. A variable that is normally distributed has a histogram that is bell-shaped, with only one peak, and is symmetric
# around the mean.
# 2. (Q-Q) plot, shows the distribution of the data against the expected normal distribution. For normally distributed data,
# observations should lie approximately on a straight line. As all the points fall approximately along this reference line,
# we can assume normality.
set.seed(1)
norm <- rnorm(1000)
round(t(describe(norm)),2)
hist(norm, freq = FALSE)
lines(x = density(norm), col = "red")
qqnorm(norm)
qqline(norm)
# All plots in a function
eda.plots <- function(data, ask=F){
graphics.off()
numeric.only <- sapply(data,class)=='numeric'
y <- data[,numeric.only]
n<-ncol(y)
for (i in 1:n){
if (!ask) win.graph()
par(mfrow=c(2,2), ask=ask)
y1 <- y[,i]
vioplot(y1)
hist(y1, probability=TRUE, main=names(y)[i])
lines(density(y1), col=2)
qqnorm(y1, main=names(y)[i])
qqline(y1)
boxplot(y1, main=names(y)[i], horizontal=TRUE)
}
}
# install.packages("vioplot")
library(vioplot)
eda.plots(salary.num, ask=T)
graphics.off()
# Q-Q Plots
# Observations should lie approximately on the straight Q-Q line. As all the points do not fall approximately along this
# reference line, we can not assume normality, by only viewing Q-Q Plots.
par(mfrow=c(2,3))
for (i in 1:length(salary.num)){
qqnorm(salary.num[,i], main = paste("Q-Q Plot of" , names(salary.num)[i]))
qqline(salary.num[,i])
}
# Log Q-Q Plots
# As natural logarithm of 0 is undefined we add to the variable work a small positive value.
# As before, even after log transformation, a large amount of points do not fall on the Q-Q line, even for variables time, work
sapply(salary.num,min)
salary.num[,6] <- salary.num[,6]+0.5
salary.num.log<-log(salary.num)
p<-ncol(salary.num.log)
par(mfrow=c(2,3))
for (i in 1:p){
qqnorm(salary.num.log[,i], main = paste("Q-Q Plot of Log" , names(salary.num)[i]))
qqline(salary.num.log[,i])
}
# Histograms and Density Plots (red) against Normal Distribution Density Plot (blue)
# As before, the two density plots are not even close. Even variable time that seems symmetric, is not bell-shaped and
# has many peaks.
p<-ncol(salary.num)
par(mfrow=c(2,3))
for (i in 1:p){
hist(salary.num[,i], main=names(salary.num)[i], probability=TRUE)
lines(density(salary.num[,i]), col=2)
index <- seq(min(salary.num[,i]), max(salary.num[,i]), length.out=500)
ynorm <- dnorm(index, mean=mean(salary.num[,i]), sd(salary.num[,i]) )
lines(index, ynorm, col=4, lty=3, lwd=3 )
}
par(mfrow=c(1,1))
##################################################################################################################################
##################################################################################################################################
## ##
## ANSWER TO QUESTION 3 ##
## ##
##################################################################################################################################
##################################################################################################################################
# Hypothesis test for a single continuous variable
# Variable: salbeg
# Null Hypothesis: h0: μ = 1000
# Alternative: h1: μ != 1000
# install.packages("nortest")
# install.packages("lawstat")
# I believe constructing a function to handle the answer explains all cases and choices of tests
library(nortest)
library(lawstat)
single_cont <- function(data, column, condition, sl = 0.05){
var1 <- data[,column]
par(mfrow=c(1,2))
# Can we assume normality?
test1 <- 1
if (length(var1) > 50){
test1 <- lillie.test(var1)$p.value
}
test2 <- shapiro.test(var1)$p.value
qqnorm(var1, main = paste("Q-Q Plot of" , names(data)[column]))
qqline(var1)
if ((test1 < sl) | (test2 < sl)){
# Is the sample large?
if (length(var1) > 50){
# Is the mean a sufficient descriptive measure for central location?
test3 <- symmetry.test(var1)$p.value
boxplot(var1, main = paste("Boxplot of" , names(data)[column]), horizontal=TRUE)
}
if ((length(var1) <= 50) || (test3 < sl)){
final <- wilcox.test(var1, mu = condition)$p.value
}
}
if (((test1 >= sl) && (test2 >= sl)) || (test3 >= sl)){
final <- t.test(var1, mu = condition)$p.value
}
if (final < sl){
message <- paste("We reject the null hypothesis. P-value =", round(final,2))
} else {
message <- paste("We cannot reject the null hypothesis. P-value =", round(final,2))
}
return(message)
par(mfrow=c(1,1))
}
single_cont(salary, 2, 1000)
##################################################################################################################################
##################################################################################################################################
## ##
## ANSWER TO QUESTION 4 ##
## ##
##################################################################################################################################
##################################################################################################################################
# Hypothesis test for difference between the two dependent values/measurements
# Variable: diff of salnow and salbeg
# Null Hypothesis: h0: μ = 0
# Alternative: h1: μ != 0
x <- salary$salnow - salary$salbeg
length(x)
# Above 50, so KS + SW
lillie.test(x)
shapiro.test(x)
qqnorm(x, main = paste("Q-Q Plot of diff of" , names(salary)[6], "and", names(salary)[2]))
qqline(x)
# So we cannot assume normality and the sample is large
symmetry.test(x)
boxplot(salary$salnow,salary$salbeg, main = paste("Boxplot of" , names(salary)[2], "and", names(salary)[6]), horizontal=TRUE)
# So the mean is not a sufficient descriptive measure of central location for the difference as it is not symmetric
wilcox.test(x, mu = 0)
mean(salary$salnow)/mean(salary$salbeg)
median(salary$salnow)/median(salary$salbeg)
boxplot(x, main = paste("Boxplot of diff of" , names(salary)[6], "and", names(salary)[2]), horizontal=TRUE)
# So we reject the null hypothesis. There is significant difference between the beginning and current salary and in fact the
# current salary is about the double of the beginning
##################################################################################################################################
##################################################################################################################################
## ##
## ANSWER TO QUESTION 5 ##
## ##
##################################################################################################################################
##################################################################################################################################
# Hypothesis test for two samples - Testing for the association between a continuous and a categorical variable of two levels
# Variables: continuous: salbeg, categorical: sex
# Null Hypothesis: h0: μ1 = μ2
# Alternative: h1: μ1 != μ2
dataset1 <- salary[,2:3]
n1 <- nrow(subset(dataset1, dataset1$sex=="MALES"))
n2 <- nrow(subset(dataset1, dataset1$sex=="FEMALES"))
n1 > 50
n2 > 50
# As at least 1 of the 2 samples amount is more than 50 (the other one is also above 50), we test normality with KS, SW, Q-Q Plot
by(dataset1$salbeg, dataset1$sex, lillie.test)
by(dataset1$salbeg, dataset1$sex, shapiro.test)
males <- subset(dataset1, dataset1$sex=="MALES")
females <- subset(dataset1, dataset1$sex=="FEMALES")
par(mfrow=c(1,2))
qqnorm(males$salbeg, main = paste("Q-Q Plot of" , toupper(names(dataset1)[1]), "of", levels(dataset1$sex)[1]))
qqline(males$salbeg)
qqnorm(females$salbeg, main = paste("Q-Q Plot of" , toupper(names(dataset1)[1]), "of", levels(dataset1$sex)[2]))
qqline(females$salbeg)
par(mfrow=c(1,1))
# So we cannot assume normality for either of the two samples and both samples are large
by(dataset1$salbeg, dataset1$sex, symmetry.test)
par(mfrow=c(1,2))
boxplot(males$salbeg, main = paste("Boxplot of" , toupper(names(dataset1)[1]), "of", levels(dataset1$sex)[1]))
boxplot(females$salbeg, main = paste("Boxplot of" , toupper(names(dataset1)[1]), "of", levels(dataset1$sex)[2]))
par(mfrow=c(1,1))
# So the mean is not a sufficient descriptive measure of central location for either of the two samples
# Wilcoxon rank‐sum test (or Mann‐Whitney)
wilcox.test(males$salbeg, females$salbeg)
mean(males$salbeg)/mean(females$salbeg)
median(males$salbeg)/median(females$salbeg)
boxplot(males$salbeg, females$salbeg, names=levels(dataset1$sex)[1:2],
main = paste("Boxplot of" , toupper(names(dataset1)[1]), "of", levels(dataset1$sex)[1], "and", levels(dataset1$sex)[2]),
notch = TRUE)
# So we reject the null hypothesis. There is significant difference between the beginning salary of men and women and in fact the
# beginning salary of men is greater than the respective of women
##################################################################################################################################
##################################################################################################################################
## ##
## ANSWER TO QUESTION 6 ##
## ##
##################################################################################################################################
##################################################################################################################################
# install.packages("Hmisc")
library(Hmisc)
salary$age_cut <- cut2(salary$age, g = 3)
# Hypothesis test for three samples - Testing for the association between a continuous and a categorical variable of three levels
# Variables: continuous: salbeg, categorical: age_cut
# Null Hypothesis: h0: μ1 = μ2 = μ3
# Alternative: h1: μk != μj, for some k != j ε {1,2,3}
# ANOVA: Analysis of Variance
dataset2 <- salary[, c(2,12)]
nrow(dataset2) > 50
# ASSUMPTIONS:
# Residuals’ normality or the sample size to be large (n>50)
# Equal variances
# As total number of samples (n1 + n2 + n3) above 50, we test normality with KS, SW, Q-Q Plot
anova1 <- aov(salbeg~age_cut, data = dataset2)
lillie.test(anova1$residuals)
shapiro.test(anova1$residuals)
qqnorm(anova1$residuals)
qqline(anova1$residuals)
bartlett.test(salbeg~age_cut, data = dataset2)
fligner.test(salbeg~age_cut, data = dataset2)
library(car)
leveneTest(salbeg~age_cut, data = dataset2)
# So we cannot assume neither normality nor homoscedasticity for either of the residuals and the total number of samples is large
boxplot(salbeg~age_cut, data = dataset2, main =
paste("Boxplot of" , toupper(names(dataset2)[1]), "of", levels(dataset2$age_cut)[1], ",",
levels(dataset2$age_cut)[2], "and",levels(dataset2$age_cut)[3]))
# So the mean is not a sufficient descriptive measure of central location for either of the three samples
# Kruskal-Wallis Test (Equality of medians)
kruskal.test(salbeg~age_cut, data = dataset2)
# We reject the null hypothesis
pairwise.wilcox.test(dataset2$salbeg, dataset2$age_cut)
boxplot(salbeg~age_cut, data = dataset2, main =
paste("Boxplot of" , toupper(names(dataset2)[1]), "of", levels(dataset2$age_cut)[1], ",",
levels(dataset2$age_cut)[2], "and",levels(dataset2$age_cut)[3]))
# So we reject the null hypothesis. There is significant difference in the beginning salary of at least one age group
# and in fact the beginning salary of the 2nd age group ([29.7, 39.8)) is greater than the respective of the other two
##################################################################################################################################
##################################################################################################################################
## ##
## ANSWER TO QUESTION 7 ##
## ##
##################################################################################################################################
##################################################################################################################################
# Hypothesis test for two categorical values - Testing for the association between two categorical variables (independent samples)
# Variables: categorical: minority, categorical: sex
# Null Hypothesis: h0: πmales = πfemales
# Alternative: h1: πmales != πfemales
tab1 <- table(salary$sex, salary$minority)
prop.table(tab1, 2)
prop.test(tab1)
chisq.test(tab1)
fisher.test(tab1)
# We cannot reject the null hypothesis and so the proportion of white male employees is equal to the proportion of white female
# employees, or otherwise there is independence between gender and minority of employees.