

UNIVERSITY OF MACEDONIA

GRADUATE PROGRAM

DEPARTMENT OF APPLIED INFORMATICS

PERSONALIZED DEVELOPER NAVIGATION IN

SOFTWARE PROJECTS AIMING AT COMPREHENSIBILITY

IMPROVEMENT AND FASTER PROJECT ONBOARDING

Master’s Thesis

of

Chrysochoidis Eleftherios

Thessaloniki, June 2022

1

PERSONALIZED DEVELOPER NAVIGATION IN

SOFTWARE PROJECTS AIMING AT COMPREHENSIBILITY

IMPROVEMENT AND FASTER PROJECT ONBOARDING

Chrysochoidis Eleftherios

Master’s Thesis

submitted for partial fulfillment of

GRADUATE PROGRAM

DEPARTMENT OF APPLIED INFORMATICS

Supervising Professor

Chatzigeorgiou Alexandros

Approved by tripartite examining committee on 29/06/2022

Chatzigeorgiou Alexandros Satratzemi Maria Kaskalis Theodoros

...................................

Chrysochoidis Eleftherios

...................................

2

Abstract

Software projects nowadays are getting more sophisticated by utilizing the new

technology and the increased hardware power to meet all client requirements. New tools

and frameworks are keep coming up very frequently, generating many new opportunities

and roles which are tempting, for the majority of the developers and this leads to high

turnover rates. The turnover effect, the intensive complexity and the huge variety of new

tools are combined the main reasons for which the comprehensibility deteriorates.

Low levels of comprehensibility imply more time for a new joiner to become

productive which in turn is translated to cost. Due to high turnover rates such costs are

massive and apart from delays and costs, many projects even fail.

Comprehensibility however, is not dependent only to the project itself. Soft Skills

are very important in order to be able to grasp a project faster. Comprehensibility has been

studied a lot as the issue was identified many years ago and it affects not only the Corporate

section, but also the open source community, as contributing require a lot of time as there

is none you could directly talk to help you onboard to the project.

A survey was conducted among 81 developers and students in order to spot code

reading challenges and collect any best practices.

Combining the survey results with the literature review, a plugin was developed in

order to assist developers to onboard to new projects as the clearest result from the Survey,

was that everyone prefers the one-to-one direct meeting to onboard them on a project and

CodeTour plugin that was developed in that context, could enhance this onboarding

experience by providing an interactive way to onboard, without relying on anyone else.

Keywords: comprehensibility, turnover, intellij-plugin

3

Acknowledgements

A lot of effort has been put into getting this Thesis done, and I am more than proud

that I have completed it. The topic was really exciting and it is present on real-world

projects as well, so diving into it, helped me a lot to grow professionally.

The fact that this study along with the generated plugin was accepted to be

presented in a huge global Developers conference, was one of the highlights of my so far

career, and it proves the significance of the topic.

I would like to express my gratitude to my supervisor professor Chatzigeorgiou

Alexandro, for all the guidance and inspiration he offered me. I feel very lucky and honored

that I had the chance to work and collaborate with him, and I couldn’t have asked for more.

In addition, I would like to thank some of my colleagues and friends for the ideas

and the feedback they gave me.

Last but not least, I wish to acknowledge a special person who is in my life for

more than 8 years, my partner Konstantina, for all those times that she was there for me,

listening carefully to my ideas and thoughts and without understanding nothing at all, she

always inspired me for more.

4

Table of Contents

Table of Contents ... 4

List of Figures .. 7

List of Tables ... 8

List of Code Blocks ... 9

1 Introduction .. 10

1.1 The Issue ... 10

1.2 Goals - Research Questions ... 11

1.3 Outline .. 11

2 Literature Review ... 12

2.1 Turnover And Effects in Productivity .. 12

2.2 Comprehensibility Value ... 13

2.3 Software Comprehensibility Factors and Tools .. 15

2.3.1 Cognitive Skills .. 15

2.3.2 Spatial Skills ... 15

2.3.3 Contributing to Open Source ... 15

2.3.4 UML ... 16

2.3.5 TagSEA .. 17

3 Methodology ... 19

3.1 Survey Tool ... 19

3.2 Survey Questions... 19

3.3 Platform Investigation ... 20

4 Survey Results Analysis.. 22

4.1 Source of Responses .. 22

4.2 UML Usage ... 24

4.3 Patterns and Methodologies for Code Reading... 25

4.4 Comprehensibility Factors ... 26

4.5 CodeTour Early Feedback ... 27

5

5 Code Tour – Plugin ... 29

5.1 Introduction ... 29

5.2 Origin .. 29

5.3 Features ... 31

5.3.1 Features Comparison... 32

5.4 Implementation ... 33

5.4.1 Under The Hood ... 33

5.4.1.1 Plugin.xml .. 34

5.4.1.2 Tour Definition ... 35

5.4.1.3 Step Definition ... 35

5.4.1.4 StateManager.. 36

5.4.1.5 Tours Tree .. 37

5.4.1.6 Step Generator .. 37

5.4.1.7 Step Editor.. 38

5.4.1.8 Step Renderer ... 38

5.4.1.9 Navigator.. 39

5.4.1.10 Icons ... 39

5.4.1.11 Notifications ... 40

5.4.2 Github Repository ... 40

5.4.2.1 Continuous Integration ... 41

5.4.2.2 Issues.. 43

5.4.2.3 Discussions... 45

5.4.2.4 Wiki Pages ... 45

5.4.2.5 Contributing ... 46

6 Demonstration .. 47

6.1 Installation .. 47

6.2 Create Tours and Steps .. 47

6

6.3 Step Editor .. 48

6.4 Other Options .. 49

6.5 Use Case ... 50

6.5.1 Project Description.. 50

6.5.2 Stack ... 50

6.5.3 Business Logic .. 53

6.5.4 Goals .. 54

6.5.5 Tours .. 55

6.5.5.1 Project Introduction - Virtual Assistant ... 55

6.5.5.2 Tax Calculation Logic .. 56

7 Conclusion .. 58

7.1 Ideal Usages .. 58

7.2 Challenges ... 59

7.3 Future Work .. 61

7.3.1 Academia Research ... 61

7.3.2 CodeTour Evaluation .. 61

8 References .. 63

9 Appendix – Useful Resources ... 65

7

List of Figures

Figure 1. Productivity Turnover Modeling .. 13

Figure 2. TagSEA Eclipse Plugin .. 17

Figure 3. IntelliJ TODO Tool Window ... 18

Figure 4. Survey Summary ... 22

Figure 5. Survey Response Sources .. 23

Figure 6. Survey Device Sources .. 24

Figure 7. Survey UML Usage ... 24

Figure 8. Survey Open Source Contribution Preferences ... 25

Figure 9. Survey Onboarding Preferences ... 26

Figure 10. Survey Seniority Level and Onboarding Time .. 27

Figure 11. Survey Favorite IDE .. 27

Figure 12. Survey CodeTour Idea Rating .. 28

Figure 13. CodeTour README Badges ... 41

Figure 14. Github Issue Templates .. 45

Figure 15. Create New Tour .. 47

Figure 16. Create New Step .. 48

Figure 17. Step Editor UI .. 48

Figure 18. Rendered Step Preview .. 49

Figure 19. Step Context Menu .. 49

Figure 20. Demo Main Page ... 51

Figure 21. Demo Employees Page .. 51

Figure 22. Demo Employee Edit Dialog.. 52

Figure 23. Demo Tax Calculation Results Dialog.. 53

Figure 24. Demo Tax Calculation Class Diagram.. 54

Figure 25. Demo Tour 1 Step .. 56

Figure 26. Demo Tour 2 Step .. 56

8

List of Tables

Table 1. IDE Candidates Evaluation ... 20

Table 2. Evaluated Options for Onboarding .. 30

Table 3. Tour Definition ... 35

Table 4. Step Definition .. 35

Table 5. Action Secrets ... 43

Table 6. CodeTour Kanban Board ... 43

Table 7. Tax Regulation Types ... 53

9

List of Code Blocks

Code Block 1. Plugin.xml Structure .. 35

Code Block 2. Tour Structure Example ... 36

Code Block 3. Persisting a Tour .. 36

Code Block 4. Example of Messaging API – Subscribe .. 37

Code Block 5. Example of Messaging API – Publish .. 37

Code Block 6. Getting File and Line from Editor Gutter ... 38

Code Block 7. Navigator's Functionality ... 39

Code Block 8. Notification API Example – Error Definition ... 40

Code Block 9. Notification API Example – Error Usage ... 40

Code Block 10. Registering a custom Notification Group in plugin.xml........................ 40

10

1 Introduction

1.1 The Issue

Technology is rapidly evolving and in combination with higher computational

power and faster internet speeds, lead to more sophisticated software projects which

inevitably are more complex. Complexity is strictly related to Comprehensibility for a

project. Typically, the more complex a project is, the less comprehensible it turns out to

be. However, a software should be comprehensible because change and evolution are

critical characteristics of a project’s life. A software that doesn’t evolve will be deprecated

sooner or later as per first law of Software Evolution (Lehman, 1996).

In addition to Complexity, high Turnover rate is nowadays an issue which

deteriorates the comprehensibility of a software project because when development teams

are changing, there is some knowledge loss especially when important members leave

(Nassif and Robillard, 2017). There are many reasons for which turnover rates have been

increased, but turnover should not be considered as a root cause. Instead, its consequences

are the ones which aggravate a project’s comprehensibility.

A third cause could be considered the wide variety of New Tools, including new

technologies, frameworks, languages and libraries, that are coming up very frequently

which may affect comprehensibility in two ways: a) wide variety of tools means less

expertise on specific tools and thus less strong candidates, b) older tools are rarely

preferred by younger developers but sometimes they are asked to work with them and in

such cases they struggle more.

Project Comprehensibility is an issue for which the academic community related

to Software Engineering, has performed many studies throughout the years and it is still

open to further research. Additional to academia, this topic also concerns the Open-Source

community as well as the Enterprise world because in both cases there is an important need

for projects to be comprehensible enough, so that development teams could deal with the

requirements within a reasonable timeframe.

The importance of this issue may also be perceived from another point of view:

Software having low levels of comprehensibility eventually lead to delays, budget

exceedance and sometimes even to project failures.

11

1.2 Goals - Research Questions

The overall goal of this Thesis is to create a Tool aiming at comprehensibility

improvement and faster project onboarding.

To accomplish that goal, a literature review and a market investigation is required,

in order to find out some techniques and tools that have already been studied and evaluated

for their efficiency. This can be summed up to the first Research Question (R.Q.):

R.Q.1: Are there any available methods, tools or patterns aiming at

comprehensibility improvement?

Another interesting field of study is the factors that may affect the

comprehensibility of project and what can developers do to avoid them. This can be

summed up to the second Research Question (R.Q.):

R.Q.2: What affects a project’s comprehensibility and how can it be

maintained throughout all the development process?

After answering the two research questions, the development of a Tool aiming at

comprehensibility improvement and faster project onboarding, will become the ultimate

goal and the Thesis deliverable. The tool should be developed as a Plugin on a professional

IDE in order to be used both by Students and Professional Developers and also a setup of

a repository fully compliant with open source community should be delivered. This can be

summed up to the following Research Objective (R.O.)

R.O.1: Tool development aiming at comprehensibility improvement and

faster project onboarding.

1.3 Outline

The related research along with the findings and the development related work are

the content of the remaining document. More specifically, Section 2 contains an overview

of the related literature review, in Section 3 the Methodology following to accomplish

Thesis’ tasks is described, in Section 4 the survey results are presented, in Section 5 the

development related tasks for CodeTour Plugin are provided and in Section 6 a

demonstration for CodeTour’s usage is presented, and conclusions are in Section 7.

12

2 Literature Review

2.1 Turnover And Effects in Productivity

The main reason for which the need for comprehensibility is now more important

than ever, is due to the high Turnover ratio that is a fact in almost any company. Turnover

defines the rate at which employees leave (either willingly or not) a company and are

replaced by new ones. Such replacements have a substantial cost on companies due to the

turnover effects and it is applicable on almost any domain. However, in Software domain

it seems to be more crucial as ultimately the cost, the schedule and the efficiency of a

software project are directly affected by high turnover ratio which eventually may lead

even to project failures.

Turnover is widely studied across many domains and from different aspects (Gan

and Zhang, 2010). There may be many and various reasons for high turnover rates and

many studies have been devoted to find ways to lower those rates, but especially in

Software turnover seems inevitable.

For this reason, researchers tried to define ways to measure those effects. A very

elegant approach has been given by (Muhammad KHAN et al., 2015) which tried to

provide a framework able to calculate the Productivity Rate of software team taking into

consideration some very important factors. The idea of the framework is to define the

Optimal Productivity, which would be the productivity rate if nothing changed within the

team, and calibrate it with the Turnover, in order to find the Actual Productivity Rate.

The Turnover in that framework, consists of 3 basic factors:

a) The Turnover Rate which is the typical rate as defined earlier

b) The Job Matching which is an indicator which shows how much a new

employee would fit to a position compared to the previous employee who

was on that position. This indicator could be either negative (when the new

employee is not as good as the previous one) or positive (when the new one

turns out to be more a better fit)

c) The Firm Specific Human Capital (FSHC) which in simple words is the

skills and the knowledge of an employee, that have productive value in one

particular company

The described framework is perfectly depicted on KHAN’s paper (Muhammad

KHAN et al., 2015):

13

Figure 1. Productivity Turnover Modeling

KHAN also provided the mathematic formulas which can calculate the relation of

Optimal and Actual Productivity depicting them into diagrams for better visual

comparison. The formulas and the diagrams are suggested to be used for what-if scenarios

in terms of evaluating the current situation and trying to predict the future changes as well.

The knowledge of such relations, may lead to important decisions to be taken a-

priori to prevent dealing with unfavourable cases.

2.2 Comprehensibility Value

From a project-first perspective, Code Reading is not easy and becomes more and

more challenging and often there are cases where even the authors struggle to deal with

their own projects (Valentino Vranić, et al, 2015). Sometimes this may be the result of the

Technical Dept that is accumulated on a project throughout the years and is never paid

back, while in other cases the lack of documentation or its poor quality may lead to such

results.

Many documentation techniques have been studied and evaluated in the past

(Garousi et al., 2013) and in most of the experiments the results always shown that a good

quality documentation is valuable (Plosch, Dautovic and Saft, 2014). Documentation

quality and formats is a topic that concerns the Software Engineering academia for many

14

years as the value was clearly visible and the need for it was about to become more and

more important as correctly predicted (Curtis et al., 1989).

The reasons that maintaining a documentation is so challenging can be grouped on

2 dimensions: a) the Extra artifact and b) the lack of Measurement framework.

Documentation sometimes is part of the code either able to be extracted or not, and

other times is just an externally maintained project in any format. In both cases it is

considered an Extra artifact, as its purpose is only internal and it gives no value to the client

or the end user. Thus, extra effort is required in order to maintain it, and this effort most of

the times is not included on project estimations and just because clients don’t care about

it, documentation is the first task that is always omitted when there is not enough time

(despite there is almost never enough time).

However, even when a team cares about their documentation and they dedicate

some time to maintain their documentation, there is not any validation mechanism that can

verify the quality of the documentation. In other words, documentation cannot be measured

and thus, its quality is ambiguous. How can something be evaluated if there is not a way

to measure it? Even if there is documentation for any section, any class and any line of the

code doesn’t mean that it is good quality documentation. Besides, code is just text, and

documentation tries to explain this text to others. However, code is being tested as the

“text” is going to be transformed into features which will be tested by clients and end-

users, but for documentation that’s not the case unfortunately (Valentino Vranić et al.,

2015).

Comprehensibility is not easy and a project would rarely be very easy to read. This

is an assumption made by many researchers and professionals, and because reading or

joining a new project is a very common case for a developer, its significance has been

acknowledged. Being a developer is not easy (Spinellis, 2018) as reading and

understanding existing code in order to extend it to meet new requirements and features,

or fix issues and bugs or refactor it to reduce technical debt are tasks that a developer will

be requested to do. In addition, a developer should be able to grasp the detailed logic of a

code as much as possible, either they are the authors or the code is written by others, to

summarize the code into concise comments and share that knowledge to their colleagues.

This is of course part of the collaboration skills as well.

15

2.3 Software Comprehensibility Factors and Tools

The challenge for a project’s Comprehensibility lies on many factors. One of them

is proven to be the documentation as mentioned earlier and another factor is the quality of

the project itself. Another factor is the cognitive skills that the developer who is going to

read/onboard to the project may have.

2.3.1 Cognitive Skills

Cognitive skills are under the umbrella of Soft Skills and are considered very

valuable and complement to Hards Skills as for example Java knowledge (Schulz, 2008).

Although Cognitive Skills are not directly related to a project’s Comprehensibility, they

may play a significant role to an onboarding process as each new joiner may have different

mindset, which could make the onboarding experience vary (Valentino Vranić et al.,

2015). This conclusion led to many researchers focus on studying comprehensibility from

this point of view, having in mind that at the end a project’s comprehensibility depends on

the skills that the new joiner may have.

2.3.2 Spatial Skills

Going one step further, (Jones and Burnett, 2007) limited the Cognitive Skills that

affect positively an onboarding process to the Spatial skills. Spatial skills are defined as

“the ability to generate, retain, retrieve, and transform well-structured visual images”

(Lohman 1996). A developer having strong spatial skills, is more likely to onboard faster

and more efficiently on a new project compared to others as they will be able to extract

key information easier and navigate to the code following a more structured path. In

addition, they also state that before diving into the onboarding process and code navigation

hard skills like the level of skill in the project’s language does matter a lot.

2.3.3 Contributing to Open Source

The importance of cognitive skills has already been recognized by several

Professors and as a result many of them have adopted it to Software Engineering courses

where the students as part of the evaluation process are being asked to contribute to an

open source project. Many controlled experiments have been conducted and their results

are very satisfying (Pinto et al., 2019) as students exposed to such tasks, seem to have

gained some significant benefits. To further support and spread this method, some

16

researchers also studied the best practices and methodologies for finding suitable open

source software projects in order to teach Software Engineering (Smith et al., 2014), taking

into consideration the programming language, the size of the code base, the projects

activity (if it is active or not) and they even provide ways to search for such repositories!

Teaching Software Engineering through engagement with open source projects is a win-

win situation and the more a student is involved, the more ready would become for the real

world projects.

2.3.4 UML

Although cognitive skills are important, there is still the need to make a project as

friendly as possible for new joiners. To enhance the so-called onboarding process,

Software Engineering researchers came up with tools such the UML (Unified Modeling

Language). Cases studies has shown that UML can improve the comprehensibility of a

project as well as the traceability on the code (Anda et al., 2006) but more recent research

shows that UML is slowly abandoned and especially on open source projects where the

usage of UML is very discouraging as it is only 0.28% (less than 1%!) according to Hebig

et al., 2016. The main reason seems to be that nowadays most projects are web applications

and they don’t make use of Object Orienting Programming (OOP) features because they

are not needed. UML can be very useful to describe a structure having classes, interfaces,

inheritance as their relations could be easily identified by just viewing the UML diagram.

However, in modern web applications languages and frameworks based on JavaScript are

being widely used for which UML diagrams wouldn’t add any value. In addition, in world

where microservices are almost everywhere, having a Model View Controller (MVC)

pattern, makes the use of UML unnecessary, as the requirements for an architecture

including microservices are focused on visualizing the communication between them and

other components.

The only domain where UML could still provide some added value is on projects

where there is a complex business logic implemented using OOP features. There are many

enterprise applications which are still using such approaches and UML could still be used

there. However, even for such cases, maintaining the UML diagrams during code changes

is a big challenge (Fernández-Sáez, Genero and Chaudron, 2013). UML diagrams should

ideally be synchronized with the code and some approaches have been suggested to

17

automatically sync UML diagrams and the source code (Cazzola, Ghoneim and Saake,

2006) but they haven’t managed to be established to the community.

2.3.5 TagSEA

In 2006, an interesting tool has been developed and its usage was evaluated having

interesting results (Storey et al., 2007). The tool was called TagSEA, which stands for

Tagging of Software Engineering Activities, and it let developers turn their comments into

navigatable waypoints. The tool was available as a plugin to Eclipse IDE and its concept

was very similar to CodeTour’ s one: Tagging code parts in the code, adding meta

information for the related code block and showing all the available tags (with grouping

feature) with ability to navigate on their location and see their meta information. An

example can be seen in the figure below:

Figure 2. TagSEA Eclipse Plugin

Although the idea of TagSEA was innovative, it didn’t get much publicity and as a

result it is not active anymore. However, some parts of its functionality have been adopted

by many IDEs, as for example the TODO tasks collection. On IntelliJ-based IDEs,

http://tagsea.sourceforge.net/index.html

18

comments that include the TODO or FIXME placeholders, are automatically being

collected and shown on a tree, on the TODO tool pane. An example is shown below.

Figure 3. IntelliJ TODO Tool Window

19

3 Methodology

Having completed the related literature review, the methodology that was set up in

order to answer the Research Questions and accomplish the Research Objective, consisted

of the following 2 parts:

a) Creation and sharing a Survey to collect feedback from professional

Software Engineers and students

b) Development of CodeTour plugin for IntelliJ-based IDEs as an open source

repository friendly to any willing contributor.

3.1 Survey Tool

For conducting a Survey, the most commonly used tool is Google Forms as it well-

known, easy to use and supports all the basic requirements of a Survey.

However, for my case the option of Google Forms was inadequate due to the lack

of responsiveness and the limited design options. Having a Survey with responsive design

makes it much more accessible and as a result the potential target audience is increased.

Thus, I did some research and after evaluating some of the available options, I decided to

use SurveySparrow for my Survey.

SurveySparrow provides some very cool features, including custom survey

domain, advanced question types, animations and step by step progress and of a very nice

and responsive design that made the Survey looks very well both in browsers and mobile

screens. Of course, features like email notifications, “send me a copy of my response”

option, dashboard with analytics and charts and data export are supported.

A dedicated domain automatically created for the purpose of my Survey through

which I could create questions, design survey’s flow, share it and check results as well.

• The URL for my domain is: https://codetour.surveysparrow.com/ (requires

login as it is the management page)

• The link to the survey is: https://codetour.surveysparrow.com/s/code-

reading-challenges--best-practices/tt-080a698c44 (shared link for Survey)

3.2 Survey Questions

The Questions that were selected to be included on the survey were evaluated

taking into consideration whether their responses could potentially:

https://www.google.com/forms/about/
https://surveysparrow.com/
https://codetour.surveysparrow.com/
https://codetour.surveysparrow.com/s/code-reading-challenges--best-practices/tt-080a698c44
https://codetour.surveysparrow.com/s/code-reading-challenges--best-practices/tt-080a698c44

20

1) Answer a part of a Research Question, or provide some useful context

2) Indicate patterns or best practices followed by professional developers

and/or students

3) Evaluate the idea of creating a tool such as CodeTour (early feedback).

After the evaluation, the final questions have been collected and grouped into 3

sections:

1) Demographic: To be used for Statistical Analysis of survey's answers, with

the ambition of ending up to meaningful results. Estimated time: <1 minute

2) Project Info: Users are prompted to select a project to have in their mind

for which you want to provide feedback for. The project could be either

their current or any past project. All the questions of this section were

related to that project. Estimated time: ~1 minute

3) Onboarding and Knowledge Transfer: Onboarding on new project is

challenging both from new joiner’s point of view and from instructor’s one.

The questions of this section, aim to identify habits and trends from both

aspects. Estimated time: ~7 minutes

The full Survey exported on a PDF file is available and can be accessed from here

Survey - Code Reading Challenges & Best Practices.pdf.

In addition, results (the responses) from this survey can be accessed from here

Results Report - Code Reading Challenges & Best Practices.pdf

3.3 Platform Investigation

For the implementation of the tool, a quick investigation of the available options

performed, in order to decide the IDE for which the plugin would be implemented for. The

following 3 options evaluated, and the highlights of their evaluation are depicted on the

following table (✔=pros ❌=cons):

Table 1. IDE Candidates Evaluation

IDE Evaluation

IntelliJ ✔ Open Source

 ✔ Documentation

 ✔ Widely used by professionals (including myself)

https://github.com/LefterisXris/CodeTour/files/8987880/Survey.-.Code.Reading.Challenges.Best.Practices.-.vertical.pdf
https://github.com/LefterisXris/CodeTour/files/8987888/Results.Report.-.Code.Reading.Challenges.Best.Practices.pdf
https://www.jetbrains.com/idea/

21

 ✔ Multiple IDEs (PyCharm, WebStorm, CLion, GoLand etc)

VS Code ✔ Open Source

 ✔ Documentation

 ✔ Widely used by professionals

➖ Familiarity (personal usage)

❌Existence of similar extension

Eclipse ✔ Open Source

❌Documentation

❌Rarely used by professionals nowadays

The prevailing IDE turned out to be IntelliJ, developed by JetBrains which is the

main contributor and community orchestrator for the open source IntelliJ Community

edition IDE (Github source code repository).

In case there was no similar extension, VS Code would probably be selected,

because it provides the great feature of being able to run as an embedded web code editor.

In simple words that means that VS Code can be launched on any modern browser having

the preferred settings and extensions of a developer (requires login) making it a portable

editor with no need for any installation.

https://code.visualstudio.com/
https://www.eclipse.org/
https://www.jetbrains.com/idea/
https://github.com/JetBrains/intellij-community

22

4 Survey Results Analysis

The Survey was promoted to many different channels, including LinkedIn,

Facebook, Reddit, direct email on Software Companies and University students. In total

81 answers have been received for the Survey. The dashboard’s home screen of provided

a summary of the responses:

Figure 4. Survey Summary

The length of the survey was quite long, as the average time for the 81 respondents

needed to complete was 9 minutes. However, every single respondent that started the

survey, successfully completed it (100% completion rate)! Τhis high rate is probably due

to the warning message that the Survey provided to respondents before starting, defining

the target audience, and prompted them to continue only if they are included on it.

4.1 Source of Responses

The various responses came from different channels, but in majority they source

was social media links. This was tracked using Survey Sparrow’s feature for shared links

which provides the ability to create different links to the same Survey but with some meta-

data that they simply register the source name as defined on shared link creation. The

shared link dashboard for CodeTour’ s Survey (including their responses) is the following:

23

Figure 5. Survey Response Sources

Note: The Facebook link includes the responses that came from direct emails to

some students as the same link used on the email.

Another interesting meta-info that SurveySparrow provides, is the device source.

As the below diagram indicates, the responses were almost equally distributed into mobile

(41/51%) and computer (39/48%) while there was just 1 answer from a tablet. The high

number of mobile responses, indicates the importance of having a responsive Survey, as it

seems that many people prefer to use their mobile phones to answer surveys and especially

if they find the survey on a social media platform.

24

Figure 6. Survey Device Sources

4.2 UML Usage

Regarding UML and its usage, results show that UML is indeed not used that much

nowadays and also it is not the preferred way for reading a project. This can be verified by

3 related questions: a) the direct UML usage question (question 14), b) the

tool/methodology assistance evaluation (question 15) and c) the open source contributing

pattern (question 16) for which the available options “UML diagrams - for better

understanding the designed structure” and “Read UML diagrams - to check where your

feature could be added” respectively were both ranked last.

Figure 7. Survey UML Usage

25

4.3 Patterns and Methodologies for Code Reading

In order to extract some useful results related to Code Reading the responses to

following 2 Survey questions were analyzed:

• Consider that you came up with a cool feature on an Open Source project,

and you want to contribute on it, to implement it. However, you don't have

anyone to provide you information directly, and you have limited time, so

you need to do your contribution without spending too much time. Which

of the following actions, would you prefer doing, in order to get the "quick

win"? (Question 16, 4 options)

• Consider that you are responsible for the 1st week of training of a new

member on your Project (the project you selected before). Which of the

following, would you provide to your colleague, for that early stage?

Please select only those that are available to your Company and your

selected Project. (Question 17, 6 options)

For fast contributions to open source projects, no clear preference or trend was

identified, as there seems to be a balance between the given options.

Figure 8. Survey Open Source Contribution Preferences

When it comes to onboarding, there seems to be a clear preference on One-to-One

trainings where project is demonstrated and code is explained in detail.

26

Figure 9. Survey Onboarding Preferences

An interesting challenge here is to find the relation between the time needed for

One-to-One compared to the time needed for maintaining documentation and training

material (all the other options) because that time might eventually be more than the One-

to-One would need.

4.4 Comprehensibility Factors

To identify factors that could affect Comprehensibility, respondents were asked to

provide their rating for any of the available options (Question 15, 12 options). If a project

uses good and consistent naming conventions for classes, packages, variables etc and in

general it is well structured, that is considered a good factor and in conjunction with good

quality of documentation (both inline and external documentation) makes a project very

comprehensible.

Another interesting result is the confirmation of the concept that the level of a

developer affects the time they need to onboard. That means, that the more senior level the

developer is, the less time they will need to onboard as shown below.

27

Figure 10. Survey Seniority Level and Onboarding Time

4.5 CodeTour Early Feedback

Some early feedback has been received for CodeTour both directly and indirectly.

Initially, the responses on the favorite IDE question in which IntelliJ and VS Code are

clearly more famous compared to the others with IntelliJ being first with small difference.

Thus, CodeTour’s target IDE could be IntelliJ.

Figure 11. Survey Favorite IDE

28

For the direct part, respondents were asked to evaluate how useful would a tool

such as CodeTour could be, by providing them the description of the tool and its features.

The question was Rate questions (0-5). Having an average of 4.1/5 (82% agree) CodeTour

sounds good as an idea and thus implementing such a tool, could probably worth it.

Figure 12. Survey CodeTour Idea Rating

29

5 Code Tour – Plugin

5.1 Introduction

CodeTour is a plugin, that provides the ability to record and play back guided

walkthroughs of a project’s codebase. It's like a table of contents, that can make it easier

to onboard (or re-board) to a new project/feature area, visualize bug reports, or understand

the context of a code review/PR change. A Code Tour is simply a series of interactive

Steps, each of which is associated with a specific file/line, and includes a description of

the respective code. This allows developers to clone a repo, and then immediately start

learning it, without needing to rely on others for direct assistance. Tours can be version

controlled into a repo, to enable sharing with other contributors.

5.2 Origin

The idea of such a tool originally came to my mind, when I was member of the

Development team of a startup company, in which we used to build a whole new Software

Product from scratch. In the beginning everything was fine, as we were 7 Developers

dedicated to our project but after a while, our company started to grow and we needed

more and more stuff. After hiring a couple of developers, we noticed that the onboarding

process was very time consuming for us and not so effective for our new hired colleagues.

Our Project had grown so much, that it was very challenging even for us to explain it to

new joiners, as there were many aspects of the project that were not easy to be fully

grasped.

Every developer that was with us from company’s day 1, was confident enough for

our project, as we were a small team with great communication and very good skills. Our

challenge was to make the new joiners productive as soon as possible, and obviously, with

the lowest possible effort, as requirements and due dates were kept coming.

Unfortunately, that was not the case for us. Each new joiner, was dependent to us

for almost anything: Preparing their development environment, their local environment for

running the application, building the application along with each of their

component/service, and ultimately understanding the business logic and how it was

implemented on our project. There were many times when we wondered what we could

do in order to help our new colleagues be more confident and productive. Obviously,

“private lessons” was not an option, as the working pace on Startup companies especially

on early stages is often very high.

30

So, one day we had a conversation as a team, in order to evaluate our options for

this challenge. Many options were mentioned as for example the Video Recordings or the

extended Training Material but unfortunately, they couldn’t fit to our case. The pros and

cons of the evaluated options are briefly described on the following table.

Table 2. Evaluated Options for Onboarding

Evaluated Option Pros Cons

Video Recordings - Record once, Playback

multiple times

- Explanation and Code

Navigation

- Self-Paced (for the new

joiner)

- Efficiency

- Hard to maintain due to code

changes as editing only parts of a

video

- Detailed Explanation requires

much time to generate (good

preparation, multiple shots,

editing)

Training Material

- Presentation Decks

- Multiple levels (could be

separated be service, per

level etc)

- Self-Paced

- Maintenance

- Outside IDE

- Efficiency (such documentation

is good but not sufficient)

- External Documentation

As our project was rapidly evolving, including new features, refactors, more

components etc, we didn’t have much time to properly prepare any of the available options.

It was those days when I thought that this was a really big issue, because such cases:

• Slow down our development speed (as individuals)

• Slow down our overall progress (at least until new joiners will become

productive and caught up with the “cost” we invested for our time). More

communication, less development

• Pose a potential threat for business continuity in case development team

was entirely replaced (eventually)

I thought it would be great if somehow, we were able to provide our new joiners a

tool through which they can navigate to our project’s code and having some explanation

at the same time for the context of the specific part/logic. Thus, that was the main reason

due to which I proposed the topic of the current Thesis.

I had great expectations for this plugin, and I was sure that developers will love the

tool, and I was very happy that I will be the one who will create it! When I started my

31

research, I also created the Github repository for the plugin, which I originally named it

CodeTrailer as I thought it was catchy enough to stimulate developers’ interest.

However, after some research I came across a great VS Code extension with the

name CodeTour, authored by Microsoft. This extension was very similar to what I was

envisioned and unfortunately there was someone who has built it before me. Well, that was

a small disappointment to me, but I thought that there is still the opportunity to implement

the same tool on JetBrains related IDEs. And so I did! I changed my plans, renamed Github

repo to CodeTour, and focused only to IntelliJ platform.

Note: As there are actually 2 different tools with the same name, any reference to

CodeTour might be confusing. Thus, to make it clear, from now and on:

• CodeTour indicates my CodeTour - IntelliJ plugin while

• VS Code CodeTour indicates the CodeTour – VS Code Extension

However, it is important to mention that CodeTour and VS Code CodeTour are not

competitor tools. They are supposed to offer similar functionality but to different IDEs.

5.3 Features

As mentioned, CodeTour is available for free for both VS Code and for all IntelliJ-

based products and can be found:

• CodeTour: CodeTour - IntelliJ IDEs Plugin | Marketplace (jetbrains.com)

• VS Code CodeTour: CodeTour - Visual Studio Marketplace

CodeTour is currently in version v0.0.3 (always check the latest) in which the

minimum required functionality has been implemented and the supported features are

briefly the following:

• Tree-like View of Tours and their Steps on a Tool Window

• Code Navigation with single click (on Steps available on Tours Tree)

• Shortcuts for Navigating on Previous and Next Steps

• Easy new Steps Creation through Editor's Gutter context menu (similar to adding

breakpoints)

• Enhanced Step Editor, supporting Markdown and HTML for description along

with real time Preview Mode

https://plugins.jetbrains.com/plugin/19227-codetour
https://marketplace.visualstudio.com/items?itemName=vsls-contrib.codetour
https://github.com/LefterisXris/CodeTour/releases/tag/v0.0.3
https://github.com/LefterisXris/CodeTour/releases/latest

32

• Customizable (location, size, font etc) Popup Window for Step's description

• Version Controlled Tours for sharing/maintaining them

Some extra features have been registered and will soon be implemented from which

the most important are probably:

1. Nested Tours

2. Export Tour on independent navigatable file

3. Navigate on a Directory/Package in Project Structure View

4. Selecting code block as a Step (instead of just file:line)

5. Dynamically Step update, on code changes

Full list of Open Issues (including bugs and features) is available on Github

repository https://github.com/LefterisXris/CodeTour/issues

The Repository is Open Source so extra features may be implemented based on

Community’s requests. Further information about CodeTour’s repository can be found on

the related section 5.4.2.

5.3.1 Features Comparison

VS Code CodeTour is already 2 years old and is obviously a more mature project

with more than 50 versions so far. The initial version was released on 08/03/2020 and since

then many features have been implemented.

Comparing to CodeTour’s current state, VS Code CodeTour has some additional

features some of which are very nice:

• Code Block Selection: Instead of simply navigating on a file:line, a Step can

navigate and highlight a specific code block

• Special Elements: On a Step’s description special elements can be added. They will

be rendered as links and on click some functionality is provided, for example

o Open File -- opens a specific file

o Open Tour/Step -- opens the linked Tour or Step

o Insert Code -- inserts a code block on the current cursor location (very

useful for tutorials)

https://github.com/LefterisXris/CodeTour/issues

33

o Shell Command -- executes a shell command e.g., mvn clean install,

npm install or even a custom command!

• Exporting Tours: exports a single tour file, that contains the steps along with some

extra context (typically 5 lines before and 5 lines after Step’s location) of the related

code, so that anyone can see that tour, without having the whole code

• Maintenance Automation Watcher: Github Action and Azure Pipeline for checking

whether any tour is invalid (i.e., targets an invalid file, line or code block) to ensure

that version controlled tours are always maintained

• Customization: Configurable settings for extension’s behaviour, like Show

Markers enable/disable and setting a Custom Directory where all tours reside

instead of the default .tours directory.

Most of these features, are going to be implemented sooner or later on CodeTour.

Ideally, both tools should have similar features and also it would be nice if there is

compatibility between them, meaning that Tours created on a project using VS Code could

also work for the same project if IntelliJ-based IDE is used.

5.4 Implementation

CodeTour is built using IntelliJ Ultimate edition. Its source code is mainly written

in Java (92%) and there are some small code parts written in Kotlin (8%).

Developing an IntelliJ plugin, requires to have the IntelliJ Platform SDK (open

source) as base dependency (provided) and some specific structure common for all plugins.

This basic structure, along with many tutorials and all the available documentation of

IntelliJ Platform SDK is kindly provided by JetBrains on their official documentation site:

https://plugins.jetbrains.com/docs/intellij/welcome.html. JetBrains team has made a very

good job on providing material and guidance for anyone interested to develop their own

plugin. As a result, almost everything that I needed it was already defined on their

documentation.

Gradle is being used as build tool for CodeTour and also Gradle Kotlin DSL is

configured by default, providing powerful scripting and automation over Gradle.

5.4.1 Under The Hood

The general concept of CodeTour’s implementation is the following:

https://plugins.jetbrains.com/docs/intellij/welcome.html
https://docs.gradle.org/current/userguide/kotlin_dsl.html

34

• A Tour represents a group of Steps in a specific order. Holds extra

information for its title, description and filename.

• A Step carries information for the location to navigate formatted as

filename:line (e.g., Main.java:15), the description to render as Step’s

explanation and its title.

• All Tours are visible on CodeTour Tool window as a Tree with each Tour

being one branch of the Tree and each Tour having multiple branches for

their Steps.

• New Tours can be created directly from the Tree through its context menu

(right click on Tree’s root)

• Steps can be easily added on a Tour, by simply using the Editor’s Gutter

context menu (right click on the file:line where the Step should point to)

which will spawn a dialog so that developer can input the title and the

description of the Step.

• Developers can use the Tree to initiate the navigation, by expanding the

Tour they want and just selecting the first (or any other) Step. As soon as a

Step is selected, IDE immediately opens the related file, navigates the user

to the appropriate line and renders the Step’s description on a separate

popup Window.

• Each Tour is persisted on a separate file with .tour extension. This file

includes all the Steps for that Tour. Its structure is based on JSON.

• The base directory under which all Tours are persisted, is the .tours

directory under Project’s root (it is automatically be created if it doesn’t

exist).

Further implementation details are provided below for the most important parts of

CodeTour’s source code.

5.4.1.1 Plugin.xml

The file plugin.xml, is required for any plugin and it holds information related to

the declaration of a Plugin including actions, icons, shortcuts and services. It is located

under resources/META-INF directory and it is the most important file of any IntelliJ

plugin. The basic structure of a plugin.xml follows as an example, while more information

can be found on Plugin Configuration File Documentation.

https://github.com/LefterisXris/CodeTour/blob/main/src/main/resources/META-INF/plugin.xml
https://plugins.jetbrains.com/docs/intellij/plugin-configuration-file.html?from=IJPluginTemplate

35

Code Block 1. Plugin.xml Structure

<idea-plugin>

 <id>org.uom.lefterisxris.codetour</id>

 <name>CodeTour</name>

 <vendor>lefterisxris</vendor>

 <depends>com.intellij.modules.platform</depends>

 <extensions defaultExtensionNs="com.intellij">

 ...

 </extensions>

 <applicationListeners>

 ...

 </applicationListeners>

 <actions>

 ...

 </actions>

</idea-plugin>

5.4.1.2 Tour Definition

Tour is defined in class Tour.java under domain package, and has the following

fields:

Table 3. Tour Definition

Field Description

id A random UUID for uniqueness

title Tour’s title, visible on the Tree

tourFile The filename that this Tour will be persisted in

description A description of the Tour

steps List with all the Steps of the Tour in the given order

5.4.1.3 Step Definition

Step is defined in class Step.java under domain package, and has the following

fields:

Table 4. Step Definition

Field Description

title Step’s title, visible on the Tree

description Step’s description. Can be MARKDOWN, HTML or simple text

file The file reference that the Step should open

line The specific line to which the Step should Navigate the developer

https://github.com/LefterisXris/CodeTour/blob/main/src/main/java/org/uom/lefterisxris/codetour/tours/domain/Tour.java
https://github.com/LefterisXris/CodeTour/blob/main/src/main/java/org/uom/lefterisxris/codetour/tours/domain/Step.java

36

Code Block 2. Tour Structure Example

{

 "id": "70abd0f5-3fb7-4309-a9bf-97afeb28aa9b",

 "tourFile": "sampleTour.tour",

 "title": "Sample Tour",

 "description": "A Sample Tour",

 "steps": [

 {

 "title": "A Step 1",

 "description": "# A Title\n\nThis is **Step 1**!!",

 "file": "Main.java",

 "line": 14

 },

 {

 "title": "A Step 2",

 "description": "# Another Title\n\nThis is **Step 2**!!",

 "file": "Main.java",

 "line": 28

 }

]

}

5.4.1.4 StateManager

Tours and their related Steps are persisted and managed through the class

StateManager.java. In general, all CRUD operations (Create, Read, Update, Delete) for

them are handled by StateManager. For Read and Write operations Google’s GSON library

is being used, as both Tour and Step classes are serialized as JSON formatted objects and

stored in .tour files.

CRUD operations are always performed within a transaction, using an API

provided by IntelliJ. For example, to write into a file, the operation should be registered

within a WriteAction.runAndWait(()->{…}) block. Example of persisting a Tour into a

file:

Code Block 3. Persisting a Tour

WriteAction.runAndWait(() -> {

 // Persist the file, using IntelliJ’s virtualFiles

 final VirtualFile vfile = toursDir.createChildData(this, fileName);

 vfile.setBinaryContent(GSON.toJson(tour).getBytes(UTF_8));

 reloadState();

});

https://github.com/LefterisXris/CodeTour/blob/main/src/main/java/org/uom/lefterisxris/codetour/tours/state/StateManager.java
https://github.com/google/gson

37

In addition, StateManager holds the information for the active Tour and the active

Step, which in simple words shows the Step to which the user navigated last. This

information is required for Previous/Next Step actions to be functional.

5.4.1.5 Tours Tree

To add a custom ToolWindow on IntelliJ Platform, the ToolWindowFactory

interface should be implemented in order to register a factory which will create the

ToolWindow. CodeTour’s factory class is ToolPaneWindowFactory.java which is used as

factory for the ToolPaneWindow.java class.

The ToolPaneWindow, uses the StateManager to load the available Tours, creates

a component of Tree type (internal IntelliJ component) for which the TreeRenderer.java is

registered as Cell renderer (i.e. responsible for how the Tree will rendering). Listeners are

registered on the Tree in order to provide the single-click Navigation and also Context

menu actions for Tours and Steps.

Finally, ToolPaneWindow subscribes to 2 messaging channels for listening on

changes that require Tree re-render. Messaging API (MessageBus) is provided by IntelliJ

and handled internally. An example follows and more info can be found here Messaging

Infrastructure (jetbrains.com).

Code Block 4. Example of Messaging API – Subscribe

project.getMessageBus()

 .connect()

 .subscribe(TourUpdateNotifier.TOPIC, (tour) -> {

 stateManager.reloadState(); // get the latest updates from State

 createToursTee(project); // re-create the tree

 selectTourLastStep(tour); // select the updated tour

});

Code Block 5. Example of Messaging API – Publish

// Notify UI to re-render

project.getMessageBus()

 .syncPublisher(TourUpdateNotifier.TOPIC)

 .tourUpdated(activeTour.get());

5.4.1.6 Step Generator

The TourStepGeneratorAction.java is responsible for handling the Step creation

taking advantage the Editor’s Gutter menu. To implement the required functionality, the

class should extend IntelliJ’s AnAction interface, and also be registered as action on

https://github.com/LefterisXris/CodeTour/blob/main/src/main/java/org/uom/lefterisxris/codetour/tours/ui/ToolPaneWindowFactory.java
https://github.com/LefterisXris/CodeTour/blob/main/src/main/java/org/uom/lefterisxris/codetour/tours/ui/ToolPaneWindow.java
https://github.com/LefterisXris/CodeTour/blob/main/src/main/java/org/uom/lefterisxris/codetour/tours/ui/TreeRenderer.java
https://plugins.jetbrains.com/docs/intellij/messaging-infrastructure.html
https://plugins.jetbrains.com/docs/intellij/messaging-infrastructure.html
https://github.com/LefterisXris/CodeTour/blob/main/src/main/java/org/uom/lefterisxris/codetour/tours/actions/TourStepGeneratorAction.java

38

plugin.xml along with its desired place to let IntelliJ platform know where to add that

action.

Whenever a developer uses that Action, CodeTour retrieves automatically the file

and the line of the location they selected, by taking advantage of the VIRTUAL_FILE and

the EditorGutter.LOGICAL_LINE_AT_CURSOR as dataId from the action event and

registers it as the location reference for the Step. After that, a dialog pops up to the

developer in order to input Step’s information. The dialog is of type StepEditor which is

described below.

Code Block 6. Getting File and Line from Editor Gutter

// Get the file and line in which user clicked

final int line = e.getDataContext()

 .getData("EditorGutter.LOGICAL_LINE_AT_CURSOR");

final VirtualFile virtualFile = e.getDataContext()

 .getData(CommonDataKeys.VIRTUAL_FILE);

5.4.1.7 Step Editor

Step Editor.java is a custom implementation of DialogWrapper and its purpose is

to provide a friendly UI to the developer to insert their Step. Step Editor’s description field

can support MARKDOWN, HTML and of course simple text. The description will be

properly formatted when it will be shown to the Developer through the Step Renderer.

However, Step Editor is equipped by a Preview tab in which the description is rendered

exactly as in Step Renderer, so that the Developer can check how Step’s description will

look like when rendered.

5.4.1.8 Step Renderer

Similarly, StepRenderer.java is also a custom implementation of DialogWrapper,

and its purpose is to popup a dialog, having rendered Step’s description.

This dialog stores User Settings regarding the location and the size of the dialog

window, to reuse it for all next steps, giving a smoother user experience this way. The

internal class UserSettings is used for this purpose.

Step’s description can be either MARKDOWN, HTML or simple text. In any case

Step Renderer makes use of a MarkdownParser class, provided by IntelliJ platform,

through which it transforms any MARKDOWN text to HTML and then HTML is properly

rendered on the dialog component having the appropriate format.

https://github.com/LefterisXris/CodeTour/blob/main/src/main/java/org/uom/lefterisxris/codetour/tours/ui/StepEditor.java
https://github.com/LefterisXris/CodeTour/blob/main/src/main/java/org/uom/lefterisxris/codetour/tours/service/StepRenderer.java

39

In addition, StepRenderer dialog provides 2 extra buttons for easy navigation to

Previous/Next Step, directly from the dialog.

5.4.1.9 Navigator

The Navigation to a specific file:line indicated by a Step can be triggered by 5

different ways in CodeTour:

1. By single click on a Step from Tours Tree

2. Using the Previous/Next buttons from Tours Tree

3. Using the Previous/Next buttons from StepRenderer dialog

4. Using the registered Actions in Tools menu (Tools > CodeTour) where

there is Previous Step and Next Step actions

5. By using the registered keyboard shortcuts which are

a. Ctrl + Alt + Q → Navigate to Previous Step

b. Ctrl + Alt + W → Navigate to Next Step

All of these cases make use of the Navigator.java class (either directly or through

Tours Tree messaging API) and its functionality is to:

1. Locate the target reference, indicated by the input Step’s file:line property

(uses IntelliJ FilenameIndex utility method)

2. Open the target file on the editor, requesting immediate focus on the target

line

3. Fires up the StepRenderer in order to show Step’s description on the popup

dialog

Code Block 7. Navigator's Functionality

// Find the appropriate file

final VirtualFile vFile = FilenameIndex

 .getVirtualFilesByName(step.getFile(), projectScope);

// Navigate requesting focus

new OpenFileDescriptor(project, vFile, step.getLine()).navigate(true);

// Show StepRenderer

StepRenderer.getInstance(step, project).show();

5.4.1.10 Icons

CodeTour uses a special pattern for Icons management, which is very handy for

IntelliJ Plugins development. The icon files are placed under resources as usual, and there

https://github.com/LefterisXris/CodeTour/blob/main/src/main/java/org/uom/lefterisxris/codetour/tours/service/Navigator.java

40

is an interface called CodeTourIcons.java under package icons in which all the icons are

loaded using IntelliJ Platform’s utility class IconLoader, and this way, the icons can be

used in any place of the code as well as in plugin.xml file.

5.4.1.11 Notifications

There are some cases in which CodeTour needs to show a notification to the

developer. For such cases, CodeTourNotifier.java class has been created and provides the

API for CodeTour notifications hiding all the boilerplate code, making notifications easier

and more consistent. All notifications are also logged for easier debugging in case it is

needed. An example of the definition and the related usage follows:

Code Block 8. Notification API Example – Error Definition

public static void error(@Nullable Project project, String content) {

 NotificationGroupManager.getInstance()

 .getNotificationGroup("CodeTour-Notification")

 .createNotification(content, NotificationType.ERROR)

 .setIcon(CodeTourIcons.LOGO_S)

 .notify(project);

 LOG.error("CodeTourNotifier: " + content);

}

Code Block 9. Notification API Example – Error Usage

CodeTourNotifier.error(project, "Unexpected Tour Error");

In order to register a custom Notification group, there should be a declaration in a

notificationGroup tag, giving the id of the group, the display type and the default icon.

Code Block 10. Registering a custom Notification Group in plugin.xml

<notificationGroup id="CodeTour-Notification"

 displayType="BALLOON"

 icon="CodeTourIcons.LOGO_S"/>

5.4.2 Github Repository

CodeTour is open source, and its code is publicly available on Github on the

following link: https://github.com/LefterisXris/CodeTour under MIT license which in

simple words means it is available for modification, distribution and even for commercial

use.

Repository’s README.md contains a very brief explanation about the project, its

structure, useful metrics, installation and usage instructions. The metrics that mentioned

are appeared as badges, and they are special because they are not static. Instead, they are

https://github.com/LefterisXris/CodeTour/blob/main/src/main/java/icons/CodeTourIcons.java
https://github.com/LefterisXris/CodeTour/blob/main/src/main/java/org/uom/lefterisxris/codetour/tours/ui/CodeTourNotifier.java
https://github.com/LefterisXris/CodeTour
https://github.com/LefterisXris/CodeTour/blob/main/LICENSE
https://github.com/LefterisXris/CodeTour/blob/main/README.md

41

always updated by the reference to which are configured to be coupled with. CodeTour’s

badges that are available on README are the following:

• Build Workflow status -- from Github Actions

• Plugin latest version (released) -- from JetBrains Marketplace

• Plugin downloads/installations -- from JetBrains Marketplace

• Plugin rating -- from JetBrains Marketplace

Figure 13. CodeTour README Badges

Another important README’s part is the Plugin Description for which there is

some magic behind. Everything that is between tags <!--Plugin Description --> and <!-

-Plugin Description end --> is automatically retrieved and published to Marketplace as

the Description of any new release. This way, there is a single point of reference for

updating Plugin’s description! Further information can be found on section 5.4.2.1.

5.4.2.1 Continuous Integration

Much effort has been put into Automating non-coding related things and thanks to

IntelliJ Plugin Template many of them have been implemented and an overview for each

one of them is provided below.

More specific, Build workflow is declared on build.yml file and it does the

following build related tasks:

• Triggered when a new Pull Request opens or closes (merged)

• Runs the test Gradle task (also runs backwards compatibility with older

IDE versions)

• Runs code analysis related tasks (Qodana and CodeQL)

• Runs buildPlugin Gradle task which also generates the executable

• Runs the verifyPlugin Gradle task, which validates the executable (making

sure it is a valid plugin) through the IntelliJ Plugin Verifier tool

• [only on PR close] Collects the release notes from CHANGELOG.md file

(everything under the ## [Unreleased] section)

https://github.com/JetBrains/intellij-platform-plugin-template
https://github.com/LefterisXris/CodeTour/blob/main/.github/workflows/build.yml
https://www.jetbrains.com/help/qodana/qodana-github-action.html
https://github.com/github/codeql-action

42

• [only on PR close] Creates a draft release on the Github release page, with

the collected release notes and the attached executable

Once the Pull Request is closed, the Draft release can be promoted to public release

with the hit of a single button (from Github’s draft release page). This will fire the released

event and then the Release workflow, declared on release.yml file, will take action:

• Triggered on released event

• Signs the executable of the Plugin, with a provided certificate (required for

publishing the plugin to JetBrains Marketplace)

• Publishes the plugin to JetBrains Marketplace using a configured

PUBLISH_TOKEN

• Patches the CHANGELOG.md file (release notes that were under ##

[Unreleased] will go under a new section with the name of the release e.g.

[0.0.3] and will create a Pull Request for this change)

And that’s it! The new release has been published to Marketplace with almost zero

extra effort.

The value of this automation is priceless, as it speeds up the development process

making developers to focus only on the code! This is great for any Software, and I am

proud to have it done for CodeTour because it literally saves me valuable time. On each

new CodeTour release, the work that I have to do is:

• Develop features

• Keep the CHANGELOG.md updated with the release notes under ##

[Unreleased] section

• Keep the Plugin Description section in README.md updated (if it needs

to change)

• Bump the version (if not already bumped)

• Open a PR when feature(s) are done

• Wait for all the checks to pass (build, test, compatibility, verifier, analysis)

• Merge the PR

• Make the draft release Public

• Merge the auto created PR with the patched CHANGELOG.md

Nothing more is required! The new version has been published to JetBrains

Marketplace, a Github release has been created as well as a code tag, and the code is ready

for further development!

https://github.com/LefterisXris/CodeTour/blob/main/.github/workflows/release.yml

43

Note: Some Automation stages requires some configuration including certificates,

passwords and tokens. Such configuration cannot be publicly available and so they are

provided through Github ACTION SECRETS. Once configured, those secrets can be used

on project’s pipelines through the interpolation logic: ${{secrets.GITHUB_TOKEN}}. The

Secrets that CodeTour uses are briefly describe on the following table:

Table 5. Action Secrets

SECRET Name Usage

GITHUB_TOKEN The authentication token, automatically assigned by

GitHub when a pipeline starts

CERTIFICATE_CHAIN Certificate chain, should contain: -----BEGIN

CERTIFICATE-----...-----END CERTIFICATE---

-

PRIVATE_KEY Certificate private key, should contain: -----BEGIN

ENCRYPTED PRIVATE KEY-----...-----END

ENCRYPTED PRIVATE KEY-----

PRIVATE_KEY_PASSWORD Password used for encrypting the certificate file.

PUBLISH_TOKEN Publishing token generated in your JetBrains

Marketplace profile dashboard.

5.4.2.2 Issues

The planning of CodeTour development is performed using Github Issues and

Kanban Boards with some simple automation. The issues are grouped into some labeled

collections that are visible as columns on the Board. The columns that are currently used,

along with their usage follows:

Table 6. CodeTour Kanban Board

Column Usage Automation

Backlog Issues that need to be picked up. In

other words, the TODO list

- Newly Added Issues

- Reopened Issues

Sprint Issues that are planned for work and

will be included on the next release

-

https://docs.github.com/en/actions/security-guides/encrypted-secrets

44

In progress Issues/PR that have been picked up,

and are currently in progress

- Newly Added Pull Requests

- Reopened Pull Requests

Icebox Issues/PR that are either blocked, or

paused for any reason

Done Issues and PR that have been

completed (either merged or not) or

closed

- Closed Issues

- Merged Pull Requests

- Closed Pull Requests (with

unmerged commits)

 As CodeTour is Open Source, issues may be opened by anyone from the

community. This sounds great, but imagine the mess that could happen if anyone opens

bugs on a different way, not mentioning important info like Steps To Reproduce, or IntelliJ

version etc. To avoid such cases, some Github templates have been created and can be used

for opening issues, based on their type. This way there will be a consistency on project’s

issues which will make the maintenance more manageable.

 The available templates are briefly described below:

• Bug report template (bug_report.md) should include information related to

the following:

o A clear and concise description of what the bug is

o Steps to reproduce the behavior

o Expected Behavior vs Actual

o Screenshots (if applicable)

o System (OS, IDE, version etc)

• Feature request template (feature_request.md) should include:

o The idea of the feature through a concise description

o The solution that you might have thought (how would you image to

be or work)

o Alternatives or other systems that support similar features

These templates are automatically show to users whenever they try to open a new

Issue as show below.

https://github.com/LefterisXris/CodeTour/blob/main/.github/ISSUE_TEMPLATE/bug_report.md
https://github.com/LefterisXris/CodeTour/blob/main/.github/ISSUE_TEMPLATE/feature_request.md

45

Figure 14. Github Issue Templates

5.4.2.3 Discussions

A Discussion Area has been created for CodeTour for easier interaction with the

community. The Discussion Area can be used to make announcements, create Polls, ask

questions, share feedback, thoughts, ideas etc.

On a typical Open Source project, a Discussion Area can also be used as a

Frequently Asked Questions (FAQ) section, or even forum related to any application topic.

The idea of having a place where voting questions and answers is provided by default,

works great for Open Source projects and I hope that this will also happen to CodeTour.

5.4.2.4 Wiki Pages

Any Open Source project, needs to have some kind of documentation. Github

provides the Wiki Pages which can be used for project’s documentation as it provides some

nice features:

• Version control of the documentation

• Rich text support by enhanced MARKDOWN

https://docs.github.com/en/communities/documenting-your-project-with-wikis/about-wikis

46

• Online editor with Preview feature

• Easy images or attachments upload with a simple Drag & Drop

• Multiple pages and sub-pages structure with automated Table of Content

for quick navigation

• Publicly available (no need to care for deploying the documentation)

(multiple Easy editing

CodeTour’s Wiki Pages contain a lot of information, including CodeTour’s demo,

tutorials, Best Practices, Technical Implementation details and some information related

to Contributing on CodeTour repository.

5.4.2.5 Contributing

As CodeTour is open source, anyone is free to use, study, modify and distribute the

project for any purpose. Open source let people contribute on projects they rely to and most

of the time contributing is a rewarding way to learn new skills and improve collaborations

skills which is probably the most important one.

To do so, CodeTour’s repository is configured to include much information to

make it easier for anyone interested to contribute. For this purpose, the following have

been configured/created:

• Project’s quick description (with topics/keywords)

• README.md -- tech stack, detailed description, installation steps, and

usage guides

• CODE_OF_CONDUCT.md -- for defining community policies

• CONTRIBUTING.md -- for listing Contributing instructions

• License -- MIT

• Issue Templates -- for consistency and maintenance purposes

• Pull Request Templates -- for consistency and maintenance purposes

Building and maintaining a community is challenging, as on the one hand, the

project should be Open Source friendly and on the other hand the contributors should

follow community guidelines and in case they don’t there should be tools and policies to

detect such cases and take actions appropriately.

https://github.com/LefterisXris/CodeTour/blob/main/README.md
https://github.com/LefterisXris/CodeTour/blob/main/CODE_OF_CONDUCT.md
https://github.com/LefterisXris/CodeTour/blob/main/CONTRIBUTING.md
https://github.com/LefterisXris/CodeTour/blob/main/LICENSE
https://github.com/LefterisXris/CodeTour/tree/main/.github/ISSUE_TEMPLATE
https://github.com/LefterisXris/CodeTour/tree/main/.github/PULL_REQUEST_TEMPLATE

47

6 Demonstration

6.1 Installation

To install CodeTour, 3 options are available:

1. Use the Marketplace from within the IDE: Settings/Preferences >

Plugins > Marketplace > Search for "CodeTour" > Install Plugin

2. Got to JetBrains online Marketplace CodeTour - IntelliJ IDEs Plugin |

Marketplace (jetbrains.com) and select Get or Install to IDE

3. Manually installation: Download the latest release (zip file) and install it

manually by locating the zip, and select it by following the options:

Settings/Preferences > Plugins > ⚙️ > Install plugin from disk...

6.2 Create Tours and Steps

Creating a Tour is very simple and can be done from CodeTour Tool Window. If

the Tool window is not visible, open it from View > Tool Windows > Tours Navigation.

To create a new Tour, use the context menu (right click) of the Code Tours node in

Tours tree:

Figure 15. Create New Tour

Step creation can be done either from Tour’s context menu, or directly from the Editor's

Gutter context menu (similar to adding breakpoints) Right Click on gutter > Add Tour

Step.

https://plugins.jetbrains.com/plugin/19227-codetour
https://plugins.jetbrains.com/plugin/19227-codetour
https://github.com/LefterisXris/CodeTour/releases/latest

48

Figure 16. Create New Step

6.3 Step Editor

For creating or editing a Step, a component named StepEditor has been created

that provides the UI to the user for managing the Step. StepEditor comes with a built-in

preview mode, that renders the Step’s description so that the developer can check how will

it look like, once rendered.

StepEditor provides fields for Title, Navigation reference and Step’s description,

with full Markdown and HTML support. The editor can be seen in the following figure:

Figure 17. Step Editor UI

The rendered description of this Step is available both by preview mode and from Step

Navigation and it looks like the following figure:

49

Figure 18. Rendered Step Preview

6.4 Other Options

Steps, as nodes of Tours tree, support context menu where the options of Edit Step,

Re-order (Move up and Move down) and Delete Step are available.

Figure 19. Step Context Menu

50

6.5 Use Case

To demonstrate an actual usage of CodeTour, a new sample project was

implemented. The source code can be found in my Github profile.

6.5.1 Project Description

The project that was developed for demonstration purposes, is a simple Web

Application, which like a small CRM (Customer Relationship Management) system

provides CRUD (Create Read Update Delete) operations for Employees and for Tax

Regulations. Additionally, it provides a simple business logic, as Tax Regulations are

configurable and they define the way that tax amount is going to be calculated.

6.5.2 Stack

The project is complete web application, and consists of:

• Backend implemented with Spring Boot

• JPA for handling persistence, in H2 database (embedded)

• CRUD implementation for Employees and TaxRegulations

• Swagger Rest-API documentation using OpenAPI docs

• Business logic for Tax calculation, based on the TaxRegulation

• Tests (unit) for Tax calculation

• Frontend written using Angular

• UI with cards and forms for CRUD operations

• Trigger Tax Calculation and view calculation results

• CodeTour Promotion with download or direct installation links and Github

repository reference

The main page of the Web applications is the following:

https://github.com/LefterisXris

51

Figure 20. Demo Main Page

The Employees page, lists the available employees using a card-styled form and

providing shortcut actions (Edit, Clone, Delete, Calculate Tax) for each employee:

Figure 21. Demo Employees Page

52

CRUD operations are provided with forms on modal dialogs. Besides the basic

information of an employee, the interesting fields are the Salary as the tax will take it into

account during calculation, and the TaxRegulation Type which is expandable to provide

the description of its logic.

Figure 22. Demo Employee Edit Dialog

The triggering of business logic (the Tax Calculation) is performed through the

light green/blue button with the briefcase. The results of a calculation are shown in a modal

dialog, in a simple text form:

53

Figure 23. Demo Tax Calculation Results Dialog

6.5.3 Business Logic

To make the demo project more realistic, some Tax Regulation types have been

implemented and are listed below:

Table 7. Tax Regulation Types

Type Variables Description

AnnualRate (double) rate Tax calculation where a rate is applied on

grossAnnual amount

Tax = Annual Gross Salary * [rate]

AnnualFixed (double) fixedAnnualTax Tax calculation where a fixed amount is

applied on grossAnnual amount

Annual Net Salary = Annual Gross Salary - [fixedAnnualTax]

MonthlyFixed (double) fixedMonthlyTax Tax calculation where a fixed amount is

applied on grossAnnual amount

Net Salary = Gross Salary – [fixedMonthlyTax]

AnnualScalingRate set of ScalingRateEntries

ScalingRateEntry:

[from-to: rate]

Tax calculation where the tax is calculated

based on the scaling rates

Tax = sum of scaling taxes e.g. 0€-8.000€ → 15%, 8,001€-12,000€ → 25% and

gross salary 10.000€, tax would be 8000*15%+2000*25%=1500+500=2000€

VoidCalc - Void (NoOp) Tax calculation. gross=net

(wish it was true)

54

The class diagram of the calculation implementation is provided below, in order to

have a high level overview of its structure.

Figure 24. Demo Tax Calculation Class Diagram

The results of a tax calculation include the tax amounts for annual and monthly

base as well as the net and gross salary. More specifically, the amounts are: grossSalary,

grossAnnual, netSalary, netAnnual, taxMonthly, taxAnnual. Apart from these

amounts, the proofs of the calculations are collected as clarifications and are available to

the client results.

6.5.4 Goals

Having such a project, which contains CRUD operations and some business logic,

is a good way to test CodeTour’s efficiency on onboarding process and in feature

explanation.

This project can also be used as a point of reference for ideas of useful Tours to be

included on other projects, and demonstration (navigation and description structure) to

showcase the supported features and any upcoming feature.

In the current state, only the demonstration will be utilized. In the future, this

project can be further developed and used for performing use cases in Software

55

Engineering students in order to collect their feedback and check whether CodeTour helped

them understand the project and compare it with others that didn’t use CodeTour and tried

to onboard on this project with other ways.

6.5.5 Tours

For the purpose of the demonstration, 2 Tours have been created: Project

Introduction - Virtual Assistant and Tax Calculation Logic

6.5.5.1 Project Introduction - Virtual Assistant

This Tour simulates a Tour for onboarding new joiners on a project. It should be

the first thing that a new joiner would do, as its goal is to guide the new joiner to follow a

specific approach for onboarding, in order to gain a brief understanding of the project in a

reasonable time.

The Tour consists of 8 Steps that each one has some Tasks to be done, some

Takeaways as Step’s sum up, and the elaboration of the purpose and the significance of

this Step. A short description of each step follows:

1. Getting Started: General information about the Tour, its purpose and directions

on how to use it.

2. README: Navigates to README.md file. Contains 3 tasks and 2 takeaways

3. Stack Overview: Prompts the reader to explore the Stack of the project. Contains

3 tasks and 3 takeaways

4. Packages/Components: Prompts the reader to read the files of the project to

identify the structure. Contains 3 Tasks and 4 takeaways.

5. Run the Application: Running the application and tests

6. Discover Features: Playing around with the features to identify how they are

implemented.

7. Git Log: Taking an idea of how the team works with git

8. Overview Completed! Now what?: Next Steps and ideas for better onboarding

56

Figure 25. Demo Tour 1 Step

6.5.5.2 Tax Calculation Logic

This Tour simulates an explanation of a feature that could have been done in the

context of a Pull Request.

The Tour consists of 6 Steps, and they try to assist the reader understand the tax

calculation logic easier. The steps along with a short description follows:

1. Intro: states the Purpose of the Tour, the business logic that was implemented

and the prerequisites for the implementation:

Figure 26. Demo Tour 2 Step

2. Tax Regulation Entity: provides info about the abstraction of the Tax definition

(TaxRegulation) as well as for the calculation (TaxRegulationCalc), and it ends

57

with 2 Tasks at the end which prompts the reader to navigate to sub-classes to see

the implementations.

3. Calculation Logic: defines the Calculable interface where the main methods are

declared. States the reasons and what should be implemented by sub-classes. Ends

with 3 Tasks, 2 of which are related to calculation implementation and the last one

is a prompt to check the relationship of TaxRegulation with the Employee entity

(how they are linked).

4. Calculation Result: briefly describes the results class. Prompts 3 Tasks to check

TaxResult fields and to explore the clarifications API.

5. Trigger Calculation: contains information about the entry point of the calculation,

i.e. how can someone trigger the calculation and what is that execution path.

6. Calculation Tests: prompts the reader to check the unit tests related to Tax

Calculation logic

58

7 Conclusion

The idea of a Tool that is able to explain the code to a developer with interaction

and hands on code navigation, without the need to rely on others seems great! Such a tool

can be very useful for some cases, but there are also some big challenges.

7.1 Ideal Usages

The first case where CodeTour could be very useful is the Onboarding process.

Just consider that a more Senior developer prepares some Tours in which he explains the

basic components of a project, a more detailed view of important code parts and also some

common pitfalls. Those Tours could be then shared with the new joiners, so that they would

have the ability to interactively watch these tours and navigate on the code, having the

Senior’s explanation on their side to guide them throughout the code. Those Tours can be

viewed as many times as needed by one to grasp them, and navigation on Steps can be

played or rewind based on individual’s pace.

Tours can include anything. However, the following Tours are considered very

useful for onboarding processes:

1. Project Intro - Virtual Assistant

A tour that will guide the new joiners on what to look and where to find

them in the project, with steps in and order that will optimize the onboarding

time

2. Project Conventions

Conventions of a project can be mentioned through a Tour. This tour would

include the statements or the links to the conventions, and can navigate to

real code examples.

3. Framework Basics and Resources

If the project uses a specific framework (like Spring Boot, Angular Quarkus

etc) it’s a good idea to have a Tour that will provide information about that

framework to those who are completely new to it. Apart from the

information, the Tour could provide real examples from the code, and at the

end, any extra resources related to that framework can also be shared.

Another case where CodeTour could be very useful is in the context of a Pull

Request (PR). When a new feature is implemented and a PR is opened, in a typical

59

Development workflow a code Review is taking place next. Understanding a code either

it is new or it is just modified, is sometimes a challenging task as the reviewer has to think

the same way the developer did when implementing the feature and evaluate whether it is:

• conventional (if follows specific rules, conventions and style of the team,

if reuses same structures/components etc)

• functional (if the code changes are actually dealing with the PR issue, either

to resolve the related bug or implement the related feature

• efficient (if the logic is performant, or there was another easier way)

As you may understand, code review is not easy and requires time. Consider that

you are assigned to review a PR related to a new feature implemented by a colleague that

you don’t know you can’t directly talk to them. How much time do you think you would

need, to make a good Code Review of that PR? Wouldn’t be easier, if the developer who

implemented the feature, attached a Tour (or a couple of them) in which they described

their logic and provided a guided navigation on the changes they performed so that you

could instantly checkout the code and start watching developer’s code changes along with

the provided explanation/description? For such cases, CodeTour can be very valuable!

Last but not least, as mentioned before Tours can be version controlled and thus,

they could be maintained throughout the development process. This means that every time

the code changes, any related Tour should also be updated to match the new code and be

always valid. That way, a project can use Tours as a way to Document the Features it

supports so that others can always view the Tours that are related with some features in

order to understand how that feature is implemented on the code. So, CodeTour can be a

good solution for Feature Documentation, if Tours are version controlled and their

maintenance is included on Development process in order to be always in-sync with the

code.

7.2 Challenges

Although CodeTour offers some great features, there are some challenges that

could potential make someone refrain from using CodeTour.

The challenges are mostly related to maintenance, as if a team chooses to use

CodeTour as their Feature Documentation tool, although the added value on project’s

60

comprehensibility would be high, there will be some cost, in terms of time required to

update and maintain the Tours in order to be always in-sync with the code base. This is a

very big challenge because in a real-world projects there is rarely enough time for such

maintenance related tasks and as a result, Tours will soon become outdated and probably

not useful anymore. This happens very frequently as higher-level Managers have not clear

view of Development process and they always expect new features or changes leaving no-

time for such tasks, something that eventually leads to other important issues like Technical

Dept.

Another challenge related to maintenance is Step reference and dynamic

updates. Each Step in CodeTour is associated with a file:line which indicates the location

where it will navigate the developer. In future versions, CodeTour will support selecting

code blocks instead of just file:line (already supported on VS Code CodeTour). However,

the challenge still remains the same in both cases: What if a developer add/remove lines

from a file which is included on a Step? What if a developer remove/update the code block

that was referenced by a Step? Could the Steps be auto adjusted to match the updated code?

Dynamic update seems very difficult in both cases, as in the first scenario (file:line) Steps

should be adjusted on every line change (with some proper logic of course) but without

having being coupled to code context how should they adjust? For instance, a method that

was initially a Step’s reference, may be moved at the end of the file making the Step invalid

(wrong line) and as it is not aware of the method, how should it be automatically updated?

On the other scenario (code block), code blocks are very likely to change and if they do,

should Step be updated to include the whole new block? What if some more code will be

placed in between? That kind of changes can be caught and maybe some warnings or

popups could be thrown to the developer to warn him about the state of the Step, but this

doesn’t seem so nice and it will probably be very annoying. Ultimately, maybe a

combination of those two scenarios could work, but further investigation is required and

probably a more complex implementation will take place.

Those maintenance related challenges are actually the reasons due to which

CodeTour may be preferable to be used ad-hoc and once in a while, instead of being part

of the project. Ad-hoc or once in a while cases may be Project Onboarding and PR review.

Finally, Compatibility between CodeTour and VS Code CodeTour may also

considered a challenge as it would be very nice for Tours to work on both IDEs regardless

the IDE they generated from. The challenge relies mostly on the structure and the API that

61

each IDE provides as in both cases the Tour schema should be the same, but be functional

either in IntelliJ-based IDEs or in VS Code. In addition, some extra features are about to

be implemented on CodeTour and thus keeping compatibility between both projects will

require some communication and alignment and I am not even sure if it’s possible.

However, it would be nice to have it.

7.3 Future Work

There are many related fields for which further research may be done, as well as

more ways to evaluate CodeTour. The ideas and suggestions are listed below as potential

Research Questions (or just topics).

7.3.1 Academia Research

Q1. What is the average time that a developer needs to onboard to a project (per

level probably) and what could affect that time?

Q2. Experiments with Eye-tracking devices to study code navigation patterns on

project onboarding. (and probably identify best patterns?)

Q3. Could the extensive usage of OOP (Object Oriented Programming) affect

negatively the project’s Comprehensibility? (e.g. having multiple levels of inheritance or

overdoing method overloading could make a project more difficult to read, especially to

more junior developers)

7.3.2 CodeTour Evaluation

Q1. What kind of Tours would professional developers create? Are they

maintained/evolved?

Q2. What’s the overhead of maintaining such tours?

Q3. Could tools like CodeTour automatically maintain Tours during code base

changes?

Q4. Experiment (Case Study). Onboard similar-level developers (or students) on

the same project, with and without CodeTour and evaluate the comprehensibility through

Questionnaires (to check if the understood it correctly) and Code Tasks (to check if adding

new features becomes easier/faster for those onboarded using CodeTour).

62

Q5. Experiment. Do a real Pull Request on an open source project explaining the

logic of the implementation (PR context) using a Tour (or many) and asking from the

reviewer to use CodeTour to review the PR.

63

8 References

Anda, B. et al. (2006) “Experiences from introducing UML-based development in a large

safety-critical project,” Empirical Software Engineering, 11(4), pp. 555–581.

doi:10.1007/s10664-006-9020-6.

Cazzola, W., Ghoneim, A. and Saake, G. (2006) “Viewpoint for maintaining UML

models against application changes,” in ICSOFT 2006 - 1st International Conference on

Software and Data Technologies, Proceedings. INSTICC Press, pp. 263–268.

doi:10.5220/0001310802630268.

Curtis, B. et al. (1989) “Experimental evaluation of software documentation formats,”

The Journal of Systems and Software, 9(2), pp. 167–207. doi:10.1016/0164-

1212(89)90019-8.

Fernández-Sáez, A.M., Genero, M. and Chaudron, M.R.V. (2013) “Empirical studies

concerning the maintenance of UML diagrams and their use in the maintenance of code:

A systematic mapping study,” Information and Software Technology. Elsevier B.V., pp.

1119–1142. doi:10.1016/j.infsof.2012.12.006.

Gan, K. and Zhang, C. (2010) “Effect of employees’ turnover rate on industrial firms’

production efficiency: A conceptual model,” in 2nd International Conference on

Information Science and Engineering, ICISE2010 - Proceedings, pp. 2813–2817.

doi:10.1109/ICISE.2010.5691528.

Garousi, G. et al. (2013) Evaluating Usage and Quality of Technical Software

Documentation: An Empirical Study.

Hebig, R. et al. (2016) “The quest for open source projects that use UML: Mining

GitHub,” in Proceedings - 19th ACM/IEEE International Conference on Model Driven

Engineering Languages and Systems, MODELS 2016. Association for Computing

Machinery, Inc, pp. 173–183. doi:10.1145/2976767.2976778.

Jones, S.J. and Burnett, G.E. (2007) “Spatial skills and navigation of source code,” ACM

SIGCSE Bulletin, 39(3), pp. 231–235. doi:10.1145/1269900.1268852.

Lehman, M. (1996) Laws of Software Evolution Revisited.

Muhammad KHAN, D. et al. (2015) The Impact of Employees’ Turnover at the

Productivity of a Software Machines Learning Approaches for Real-world Problems

View project Performance based comparison between RDBMS and OODBMS View

project The Impact of Employees’ Turnover at the Productivity of a Software, Article in

International Journal of Natural and Engineering Sciences. Available at:

www.nobel.gen.tr.

Nassif, M. and Robillard, M.P. (2017) “Revisiting turnover-induced knowledge loss in

software projects,” in Proceedings - 2017 IEEE International Conference on Software

Maintenance and Evolution, ICSME 2017. Institute of Electrical and Electronics

Engineers Inc., pp. 261–272. doi:10.1109/ICSME.2017.64.

Pinto, G. et al. (2019) “Training software engineers using open-source software: The

students’ perspective,” in Proceedings - 2019 IEEE/ACM 41st International Conference

on Software Engineering: Software Engineering Education and Training, ICSE-SEET

64

2019. Institute of Electrical and Electronics Engineers Inc., pp. 147–157.

doi:10.1109/ICSE-SEET.2019.00024.

Plosch, R., Dautovic, A. and Saft, M. (2014) “The value of software documentation

quality,” in Proceedings - International Conference on Quality Software. IEEE

Computer Society, pp. 333–342. doi:10.1109/QSIC.2014.22.

Schulz, B. (2008) The Importance of Soft Skills: Education beyond academic knowledge,

NAWA Journal of Language and Communication.

Smith, T. et al. (2014) “Selecting Open Source Software projects to teach software

engineering,” in SIGCSE 2014 - Proceedings of the 45th ACM Technical Symposium on

Computer Science Education. Association for Computing Machinery, pp. 397–402.

doi:10.1145/2538862.2538932.

Spinellis, D. (2018) “Being a Software Developer,” IEEE Software. IEEE Computer

Society, pp. 4–7. doi:10.1109/MS.2018.2801555.

Storey, M.A. et al. (2007) “How programmers can turn comments into waypoints for

code navigation,” in IEEE International Conference on Software Maintenance, ICSM,

pp. 265–274. doi:10.1109/ICSM.2007.4362639.

Valentino Vranić et al. (2015) Challenges in preserving intent comprehensibility in

software. Available at:

https://www.researchgate.net/publication/286875300_Challenges_in_preserving_intent_c

omprehensibility_in_software.

65

9 Appendix – Useful Resources

• CodeTour JetBrains Marketplace: CodeTour - IntelliJ IDEs Plugin | Marketplace

• CodeTour Github repository: LefterisXris/CodeTour: IntelliJ Plugin - MSc Thesis

• Survey Platform: SurveySparrow Surveys

• Survey domain: https://codetour.surveysparrow.com/

• Survey Questions: Survey - Code Reading Challenges & Best Practices.pdf

• Survey Results: Results Report - Code Reading Challenges & Best Practices.pdf

• DeveloperWeek Conference Session: Eleftherios Chrysochoidis from Accenture

at DeveloperWeek 2022

https://plugins.jetbrains.com/plugin/19227-codetour
https://github.com/LefterisXris/CodeTour
https://surveysparrow.com/
https://codetour.surveysparrow.com/
https://github.com/LefterisXris/CodeTour/files/8987880/Survey.-.Code.Reading.Challenges.Best.Practices.-.vertical.pdf
https://github.com/LefterisXris/CodeTour/files/8987888/Results.Report.-.Code.Reading.Challenges.Best.Practices.pdf
https://embed.emamo.com/event/developerweek-2022/r/speaker/eleftherios-chrysochoidis
https://embed.emamo.com/event/developerweek-2022/r/speaker/eleftherios-chrysochoidis

	Table of Contents
	List of Figures
	List of Tables
	List of Code Blocks
	1 Introduction
	1.1 The Issue
	1.2 Goals - Research Questions
	1.3 Outline

	2 Literature Review
	2.1 Turnover And Effects in Productivity
	2.2 Comprehensibility Value
	2.3 Software Comprehensibility Factors and Tools
	2.3.1 Cognitive Skills
	2.3.2 Spatial Skills
	2.3.3 Contributing to Open Source
	2.3.4 UML
	2.3.5 TagSEA

	3 Methodology
	3.1 Survey Tool
	3.2 Survey Questions
	3.3 Platform Investigation

	4 Survey Results Analysis
	4.1 Source of Responses
	4.2 UML Usage
	4.3 Patterns and Methodologies for Code Reading
	4.4 Comprehensibility Factors
	4.5 CodeTour Early Feedback

	5 Code Tour – Plugin
	5.1 Introduction
	5.2 Origin
	5.3 Features
	5.3.1 Features Comparison

	5.4 Implementation
	5.4.1 Under The Hood
	5.4.1.1 Plugin.xml
	5.4.1.2 Tour Definition
	5.4.1.3 Step Definition
	5.4.1.4 StateManager
	5.4.1.5 Tours Tree
	5.4.1.6 Step Generator
	5.4.1.7 Step Editor
	5.4.1.8 Step Renderer
	5.4.1.9 Navigator
	5.4.1.10 Icons
	5.4.1.11 Notifications

	5.4.2 Github Repository
	5.4.2.1 Continuous Integration
	5.4.2.2 Issues
	5.4.2.3 Discussions
	5.4.2.4 Wiki Pages
	5.4.2.5 Contributing

	6 Demonstration
	6.1 Installation
	6.2 Create Tours and Steps
	6.3 Step Editor
	6.4 Other Options
	6.5 Use Case
	6.5.1 Project Description
	6.5.2 Stack
	6.5.3 Business Logic
	6.5.4 Goals
	6.5.5 Tours
	6.5.5.1 Project Introduction - Virtual Assistant
	6.5.5.2 Tax Calculation Logic

	7 Conclusion
	7.1 Ideal Usages
	7.2 Challenges
	7.3 Future Work
	7.3.1 Academia Research
	7.3.2 CodeTour Evaluation

	8 References
	9 Appendix – Useful Resources

