UNIVERSITY OF MACEDONIA
GRADUATE PROGRAM
DEPARTMENT OF APPLIED INFORMATICS

PERSONALIZED DEVELOPER NAVIGATION IN
SOFTWARE PROJECTS AIMING AT COMPREHENSIBILITY
IMPROVEMENT AND FASTER PROJECT ONBOARDING
Master’s Thesis

of

Chrysochoidis Eleftherios

Thessaloniki, June 2022

PERSONALIZED DEVELOPER NAVIGATION IN
SOFTWARE PROJECTS AIMING AT COMPREHENSIBILITY
IMPROVEMENT AND FASTER PROJECT ONBOARDING

Chrysochoidis Eleftherios

Master’s Thesis

submitted for partial fulfillment of

GRADUATE PROGRAM
DEPARTMENT OF APPLIED INFORMATICS

Supervising Professor
Chatzigeorgiou Alexandros

Approved by tripartite examining committee on 29/06/2022

Chatzigeorgiou Alexandros Satratzemi Maria Kaskalis Theodoros

Chrysochoidis Eleftherios

Abstract

Software projects nowadays are getting more sophisticated by utilizing the new
technology and the increased hardware power to meet all client requirements. New tools
and frameworks are keep coming up very frequently, generating many new opportunities
and roles which are tempting, for the majority of the developers and this leads to high
turnover rates. The turnover effect, the intensive complexity and the huge variety of new
tools are combined the main reasons for which the comprehensibility deteriorates.

Low levels of comprehensibility imply more time for a new joiner to become
productive which in turn is translated to cost. Due to high turnover rates such costs are
massive and apart from delays and costs, many projects even fail.

Comprehensibility however, is not dependent only to the project itself. Soft Skills
are very important in order to be able to grasp a project faster. Comprehensibility has been
studied a lot as the issue was identified many years ago and it affects not only the Corporate
section, but also the open source community, as contributing require a lot of time as there
is none you could directly talk to help you onboard to the project.

A survey was conducted among 81 developers and students in order to spot code
reading challenges and collect any best practices.

Combining the survey results with the literature review, a plugin was developed in
order to assist developers to onboard to new projects as the clearest result from the Survey,
was that everyone prefers the one-to-one direct meeting to onboard them on a project and
CodeTour plugin that was developed in that context, could enhance this onboarding

experience by providing an interactive way to onboard, without relying on anyone else.

Keywords: comprehensibility, turnover, intellij-plugin

Acknowledgements

A lot of effort has been put into getting this Thesis done, and | am more than proud
that 1 have completed it. The topic was really exciting and it is present on real-world
projects as well, so diving into it, helped me a lot to grow professionally.

The fact that this study along with the generated plugin was accepted to be
presented in a huge global Developers conference, was one of the highlights of my so far
career, and it proves the significance of the topic.

I would like to express my gratitude to my supervisor professor Chatzigeorgiou
Alexandro, for all the guidance and inspiration he offered me. | feel very lucky and honored
that | had the chance to work and collaborate with him, and | couldn’t have asked for more.

In addition, I would like to thank some of my colleagues and friends for the ideas
and the feedback they gave me.

Last but not least, I wish to acknowledge a special person who is in my life for
more than 8 years, my partner Konstantina, for all those times that she was there for me,
listening carefully to my ideas and thoughts and without understanding nothing at all, she

always inspired me for more.

Table of Contents

Table OF CONLENTS.ooiiieiii e 4
LISE OF FIQUIES...eieiiiiee ittt e e annee e 7
LISt OF TabIES ... 8
LiSt OF COUE BIOCKSccuvieiiieiiiie e 9
L INEFOAUCTION L.t e 10
1.0 TR ISSUB .ttt ettt 10
1.2 Goals - Research QUESTIONSccuireiiieeiiie ettt aee e 11
1.3 OULIING L.ttt ettt 11

2 LITErature REVIEWooiiiiiiie i 12
2.1 Turnover And Effects in ProduCtiVityccoeiiiiiiiiiieniie e 12
2.2 Comprehensibility ValUe...........ocoo i 13
2.3 Software Comprehensibility Factors and TOOIS............cccoieiiiiieiicic, 15
2.3.1 COgNILIVE SKILIScieieeciie et 15
2.3.2 SPAtial SKIllS.......ceiiieeeiiie e 15
2.3.3 Contributing to OPEN SOUICE.......uveiiiieiiiie et e esiee et e e e e e steeesreeesaeeeenneeeas 15
2.3 4 UML .. 16
2.3.5 TAGSEA Lo 17

3 MEthOdOIOgY......ceeiiiiieeiie e 19
3L SUIVEY TOO. ... 19
3.2 SUIVEY QUESEIONS. ...ttt ettt ettt 19
3.3 Platform INVESHIGAtioNc.eeeiiiieiiie et 20
4 Survey ResUltsS ANAIYSIS.......coeiiiiiiiiie i 22
4.1 SOUICE OF RESPONSES....uuiiieiiiiiiie ettt e e e et e e e st ba e e e s srbees 22
4.2 UML USQE... . uiieiiiieei ittt ettt e e e e s st et e e e e e s s st b e e e e e e e e s s nnnbb b b neeeeeas 24
4.3 Patterns and Methodologies for Code Reading...........cccccovvvveiiiieeiiiie e, 25
4.4 Comprehensibility FACtOrS.........ccvviiiiie e 26
4.5 CodeTour Early FEedbackccvviiiiiiiii e 27

5 C0ode TOUr — PIUGIN ...iiiiiiieiciie e 29

5.1 INErOAUCTION ...ttt 29
ST © L4 o[O TP U RO P PP UP PR PPRTPY 29
DL FRALUIES....cee ettt 31
5.3.1 FEAUIeS COMPAITSON.....ceiueieiieiiieiiie et et et ettt ettt e beeanee e 32
5.4 IMPIEMENTATION ..ot 33
5.4.1UNder TE HOOUcoiiiiiiiieiieiiee e 33
5411 PRUGINXMI Lot 34
5.4.1.2 TOUr DEFINITION......uiiiiiiiii ittt 35
5.4.1.3 SteP DefiNITIONooviiiiieiie et 35
5.4.1.4 StAEMANAGETciiiieeiii ettt 36

D 4. 1.5 TOUIS TTEE ..ottt 37
5.4.1.6 StEP GBNEIALONcc.vieieiiieeeitee ettt 37
5.4.1.7 StEP EQITON....cciiiie ettt e e et e e aae e 38
5.4.1.8 StEP RENUEIETee ettt e et e e eaee e 38
ORI R B N F- AV To = Lo PR SURRSPRRPRN 39

O 4.1.10 ICONS. .. 39
5.4.1.11 NOUFICAIIONS ...t 40
5.4.2 GIthub REPOSITOIYcceiiiiieiiit ettt rae e rae e 40
5.4.2.1 Continuous INtEGrationcccvreiiieeiiie e e e 41
D.4.2.2 ISSUEBS.....eeeiiiie ittt 43
5.4.2.3 DISCUSSIONS.cuviitteiieeteete ettt sttt ettt ettt ettt nneas 45
5.4.2.4 WIKI PAJEScouvvee ettt ettt e et e e e e ana e 45
5.4.2.5 CoNrIDULING ... 46

6 DEMONSLIATION L..ooiiiiiieiiiiie e 47
6.1 INSTAIALION ... 47
6.2 Create TOUIS a0 SEEPScvvviieeiiiiee ettt e e e e et e e e st e e e s nraaee e 47

6.3 SEEP EGITON ... 48

6.4 Other OPLIONSc.eeiiiieiie ettt 49
5.5 USE CASE ...ttt 50
6.5.1 ProJECt DESCIIPIION. ...cuviiiiiieiie ettt 50
B.5.2 SEACKeeetee et 50
6.5.3 BUSINESS LOGICccutiiiiiieiiiietie ettt 53
B.5.4 GOBIS ..ot 54
B.5.5 TOUIS ...ttt 55
6.5.5.1 Project Introduction - Virtual ASSIStant............ccccveevveeiieeeniie e 55
6.5.5.2 Tax Calculation LOQICcceiiuiiiiiiiieiiie e 56

T CONCIUSTON ...ttt 58
7.1 1ARAI USAQES ...ttt ettt et 58
7.2 CRAIIBNQES. ...eee ettt e e et e e st e e s raa e e nnteeennnaeeareee s 59
T3 FULUIE WOTK ..o 61
7.3.1 Academia RESEAICNcooiiiiiiie e 61
7.3.2 CodeTour EVAlUALIONccvoiiiiiiecece e 61

8 RETEIENCES ... 63
9 Appendix — USeful RESOUICESccoivivieiiiie e 65

List of Figures

Figure 1. Productivity Turnover MOodelingccooivieiiiiieiiiesecc e 13
Figure 2. TagSEA EClIPSE PIUGIN.....c..oiiiiiiiiiie e 17
Figure 3. Intelli TODO T0Ol WINOWcooiiiiiiiiiiieiiciieesieesee e 18
FIQUIe 4. SUMVEY SUMMAIYcouviiiiiiiieiie ettt nnee s 22
Figure 5. SUrvey RESPONSE SOUICESc..ueeiuriaiieiiiiesiieeieeaiee st e sttt e e e nnne s 23
FIgure 6. SUrVEY DEVICE SOUICTESeeiiieiiiaieeiiiiesiee ettt ettt 24
Figure 7. SUIVEY UML USAQEccuviiiiiiiieiie ettt 24
Figure 8. Survey Open Source Contribution Preferences............coccovvveiiiiieiiieiicennnn 25
Figure 9. Survey Onboarding Preferencescooveieieiiiiieiii e 26
Figure 10. Survey Seniority Level and Onboarding Time.........cccccceviiiiiieniieiiieieeninenn 27
Figure 11. Survey Favorite IDEcooiiiiiiiie ittt 27
Figure 12. Survey CodeTour 1dea RatiNgccoouiiiiiiiiiiiieiiceree e 28
Figure 13. CodeTour README Badgescccueiuiiiiiiiiiiiiieiieesiee e 41
Figure 14. Github 1SSue TemPIateS.......cccuiiiiiiiie e 45
FIQUre 15. Create NEW TOUT.....cccuieeiieeesieeesieeesiee e et e e st eeastaeeesnteeesnaaeesnseeesnneeeanseeeanes 47
Figure 16. Create NEW STEDuiiiiii e sttt et e e se e e e e e e annee e e 48
Figure 17. Step EQITOr Ul.......oooiiii ettt 48
Figure 18. Rendered Step PreVIEWccuvieiiireiiiie i e et 49
Figure 19. Step CONEXE MENUoeeiiiie ettt e et e e e e 49
Figure 20. DEMO MaiN PAgEcc.vvieiiieeiiie ettt e e e e e e 51
Figure 21. Demo EMPIOYEES PAJEocciiieeiiie ettt e e 51
Figure 22. Demo Employee Edit Dialog..........ccoiiieiiiieiiiee e 52
Figure 23. Demo Tax Calculation Results Dialog............cccvevviveiiiee e 53
Figure 24. Demo Tax Calculation Class Diagram...........cccccveeviveiiieeeiieeeciee e 54
Figure 25. DEMO TOUF 1 STEP...ciiuiieeiiie sttt e e e e e aree e 56
Figure 26. DEMO TOUE 2 STEP ...cccuvieeiiieeeciieeeciee ettt ettt ste e srae e e s e et e e annee e 56

List of Tables

Table 1. IDE Candidates EVAIUALIONcccooiiiiiiiiieiiiie e 20
Table 2. Evaluated Options for ONbOoardingc.cceveveieiiiieiiiesieeeesee e 30
Table 3. TOUr DefiNITIONooiiiie et 35
Table 4. Step DefiNITIONcocuiiiiieiiiiee e 35
TabIE 5. ACHION SECIELS ...ceiiiie ettt e e e e e st e e st e e eneeas 43
Table 6. CodeTour Kanban BOard............coouuieiireiiiie e 43
Table 7. Tax RegUIAtION TYPESeeiiiiiie et 53

List of Code Blocks

Code Block 1. Plugin.Xml STFUCTUIEccoiuiiiiiiie e 35
Code Block 2. Tour Structure EXample...........oooiiiiiiiiiiieiieeee e 36
Code BIOCK 3. PEISIStING 8 TOUTc..eiitiiiiieiie ettt 36
Code Block 4. Example of Messaging APl — Subscribe ..., 37
Code Block 5. Example of Messaging APl — Publish ... 37
Code Block 6. Getting File and Line from Editor GUELErccccevvvveviiieiiiiee e 38
Code Block 7. Navigator's FUNCHIONAIITYccviiiiiiiiiieniee e 39
Code Block 8. Notification APl Example — Error Definition............c.cccooveiiiennieineenn. 40
Code Block 9. Notification APl Example — Error USageccceevvvveriieiieiiieniienieeene 40
Code Block 10. Registering a custom Notification Group in plugin.xml................c....... 40

1 Introduction

1.1 The Issue

Technology is rapidly evolving and in combination with higher computational
power and faster internet speeds, lead to more sophisticated software projects which
inevitably are more complex. Complexity is strictly related to Comprehensibility for a
project. Typically, the more complex a project is, the less comprehensible it turns out to
be. However, a software should be comprehensible because change and evolution are
critical characteristics of a project’s life. A software that doesn’t evolve will be deprecated
sooner or later as per first law of Software Evolution (Lehman, 1996).

In addition to Complexity, high Turnover rate is nowadays an issue which
deteriorates the comprehensibility of a software project because when development teams
are changing, there is some knowledge loss especially when important members leave
(Nassif and Robillard, 2017). There are many reasons for which turnover rates have been
increased, but turnover should not be considered as a root cause. Instead, its consequences
are the ones which aggravate a project’s comprehensibility.

A third cause could be considered the wide variety of New Tools, including new
technologies, frameworks, languages and libraries, that are coming up very frequently
which may affect comprehensibility in two ways: a) wide variety of tools means less
expertise on specific tools and thus less strong candidates, b) older tools are rarely
preferred by younger developers but sometimes they are asked to work with them and in
such cases they struggle more.

Project Comprehensibility is an issue for which the academic community related
to Software Engineering, has performed many studies throughout the years and it is still
open to further research. Additional to academia, this topic also concerns the Open-Source
community as well as the Enterprise world because in both cases there is an important need
for projects to be comprehensible enough, so that development teams could deal with the
requirements within a reasonable timeframe.

The importance of this issue may also be perceived from another point of view:
Software having low levels of comprehensibility eventually lead to delays, budget

exceedance and sometimes even to project failures.

10

1.2 Goals - Research Questions

The overall goal of this Thesis is to create a Tool aiming at comprehensibility
improvement and faster project onboarding.

To accomplish that goal, a literature review and a market investigation is required,
in order to find out some techniques and tools that have already been studied and evaluated
for their efficiency. This can be summed up to the first Research Question (R.Q.):

R.Q.1: Are there any available methods, tools or patterns aiming at

comprehensibility improvement?

Another interesting field of study is the factors that may affect the
comprehensibility of project and what can developers do to avoid them. This can be
summed up to the second Research Question (R.Q.):

R.Q.2: What affects a project’s comprehensibility and how can it be
maintained throughout all the development process?

After answering the two research questions, the development of a Tool aiming at
comprehensibility improvement and faster project onboarding, will become the ultimate
goal and the Thesis deliverable. The tool should be developed as a Plugin on a professional
IDE in order to be used both by Students and Professional Developers and also a setup of
a repository fully compliant with open source community should be delivered. This can be
summed up to the following Research Objective (R.O.)

R.O.1: Tool development aiming at comprehensibility improvement and

faster project onboarding.

1.3 Outline

The related research along with the findings and the development related work are
the content of the remaining document. More specifically, Section 2 contains an overview
of the related literature review, in Section 3 the Methodology following to accomplish
Thesis’ tasks is described, in Section 4 the survey results are presented, in Section 5 the
development related tasks for CodeTour Plugin are provided and in Section 6 a

demonstration for CodeTour’s usage is presented, and conclusions are in Section 7.

11

2 Literature Review

2.1 Turnover And Effects in Productivity

The main reason for which the need for comprehensibility is now more important
than ever, is due to the high Turnover ratio that is a fact in almost any company. Turnover
defines the rate at which employees leave (either willingly or not) a company and are
replaced by new ones. Such replacements have a substantial cost on companies due to the
turnover effects and it is applicable on almost any domain. However, in Software domain
it seems to be more crucial as ultimately the cost, the schedule and the efficiency of a
software project are directly affected by high turnover ratio which eventually may lead
even to project failures.

Turnover is widely studied across many domains and from different aspects (Gan
and Zhang, 2010). There may be many and various reasons for high turnover rates and
many studies have been devoted to find ways to lower those rates, but especially in
Software turnover seems inevitable.

For this reason, researchers tried to define ways to measure those effects. A very
elegant approach has been given by (Muhammad KHAN et al., 2015) which tried to
provide a framework able to calculate the Productivity Rate of software team taking into
consideration some very important factors. The idea of the framework is to define the
Optimal Productivity, which would be the productivity rate if nothing changed within the
team, and calibrate it with the Turnover, in order to find the Actual Productivity Rate.
The Turnover in that framework, consists of 3 basic factors:

a) The Turnover Rate which is the typical rate as defined earlier

b) The Job Matching which is an indicator which shows how much a new
employee would fit to a position compared to the previous employee who
was on that position. This indicator could be either negative (when the new
employee is not as good as the previous one) or positive (when the new one
turns out to be more a better fit)

c) The Firm Specific Human Capital (FSHC) which in simple words is the
skills and the knowledge of an employee, that have productive value in one
particular company

The described framework is perfectly depicted on KHAN’s paper (Muhammad
KHAN et al., 2015):

12

Reqguirements
g Software

ProdictivityRate

turnpyver

turnoverRate
Optimal Productivity

FSHC _
JobMatching

Figure 1. Productivity Turnover Modeling
KHAN also provided the mathematic formulas which can calculate the relation of
Optimal and Actual Productivity depicting them into diagrams for better visual
comparison. The formulas and the diagrams are suggested to be used for what-if scenarios
in terms of evaluating the current situation and trying to predict the future changes as well.
The knowledge of such relations, may lead to important decisions to be taken a-

priori to prevent dealing with unfavourable cases.

2.2 Comprehensibility Value

From a project-first perspective, Code Reading is not easy and becomes more and
more challenging and often there are cases where even the authors struggle to deal with
their own projects (Valentino Vrani¢, et al, 2015). Sometimes this may be the result of the
Technical Dept that is accumulated on a project throughout the years and is never paid
back, while in other cases the lack of documentation or its poor quality may lead to such
results.

Many documentation techniques have been studied and evaluated in the past
(Garousi et al., 2013) and in most of the experiments the results always shown that a good
quality documentation is valuable (Plosch, Dautovic and Saft, 2014). Documentation

quality and formats is a topic that concerns the Software Engineering academia for many

13

years as the value was clearly visible and the need for it was about to become more and
more important as correctly predicted (Curtis et al., 1989).

The reasons that maintaining a documentation is so challenging can be grouped on
2 dimensions: a) the Extra artifact and b) the lack of Measurement framework.

Documentation sometimes is part of the code either able to be extracted or not, and
other times is just an externally maintained project in any format. In both cases it is
considered an Extra artifact, as its purpose is only internal and it gives no value to the client
or the end user. Thus, extra effort is required in order to maintain it, and this effort most of
the times is not included on project estimations and just because clients don’t care about
it, documentation is the first task that is always omitted when there is not enough time
(despite there is almost never enough time).

However, even when a team cares about their documentation and they dedicate
some time to maintain their documentation, there is not any validation mechanism that can
verify the quality of the documentation. In other words, documentation cannot be measured
and thus, its quality is ambiguous. How can something be evaluated if there is not a way
to measure it? Even if there is documentation for any section, any class and any line of the
code doesn’t mean that it is good quality documentation. Besides, code is just text, and
documentation tries to explain this text to others. However, code is being tested as the
“text” is going to be transformed into features which will be tested by clients and end-
users, but for documentation that’s not the case unfortunately (Valentino Vrani¢ et al.,
2015).

Comprehensibility is not easy and a project would rarely be very easy to read. This
is an assumption made by many researchers and professionals, and because reading or
joining a new project is a very common case for a developer, its significance has been
acknowledged. Being a developer is not easy (Spinellis, 2018) as reading and
understanding existing code in order to extend it to meet new requirements and features,
or fix issues and bugs or refactor it to reduce technical debt are tasks that a developer will
be requested to do. In addition, a developer should be able to grasp the detailed logic of a
code as much as possible, either they are the authors or the code is written by others, to
summarize the code into concise comments and share that knowledge to their colleagues.

This is of course part of the collaboration skills as well.

14

2.3 Software Comprehensibility Factors and Tools

The challenge for a project’s Comprehensibility lies on many factors. One of them
is proven to be the documentation as mentioned earlier and another factor is the quality of
the project itself. Another factor is the cognitive skills that the developer who is going to
read/onboard to the project may have.

2.3.1 Cognitive Skills

Cognitive skills are under the umbrella of Soft Skills and are considered very
valuable and complement to Hards Skills as for example Java knowledge (Schulz, 2008).
Although Cognitive Skills are not directly related to a project’s Comprehensibility, they
may play a significant role to an onboarding process as each new joiner may have different
mindset, which could make the onboarding experience vary (Valentino Vrani¢ et al.,
2015). This conclusion led to many researchers focus on studying comprehensibility from
this point of view, having in mind that at the end a project’s comprehensibility depends on

the skills that the new joiner may have.

2.3.2 Spatial Skills

Going one step further, (Jones and Burnett, 2007) limited the Cognitive Skills that
affect positively an onboarding process to the Spatial skills. Spatial skills are defined as
“the ability to generate, retain, retrieve, and transform Well-structured visual images”
(Lohman 1996). A developer having strong spatial skills, is more likely to onboard faster
and more efficiently on a new project compared to others as they will be able to extract
key information easier and navigate to the code following a more structured path. In
addition, they also state that before diving into the onboarding process and code navigation

hard skills like the level of skill in the project’s language does matter a lot.

2.3.3 Contributing to Open Source

The importance of cognitive skills has already been recognized by several
Professors and as a result many of them have adopted it to Software Engineering courses
where the students as part of the evaluation process are being asked to contribute to an
open source project. Many controlled experiments have been conducted and their results
are very satisfying (Pinto et al., 2019) as students exposed to such tasks, seem to have

gained some significant benefits. To further support and spread this method, some

15

researchers also studied the best practices and methodologies for finding suitable open
source software projects in order to teach Software Engineering (Smith et al., 2014), taking
into consideration the programming language, the size of the code base, the projects
activity (if it is active or not) and they even provide ways to search for such repositories!
Teaching Software Engineering through engagement with open source projects is a win-
win situation and the more a student is involved, the more ready would become for the real

world projects.

2.3.4 UML

Although cognitive skills are important, there is still the need to make a project as
friendly as possible for new joiners. To enhance the so-called onboarding process,
Software Engineering researchers came up with tools such the UML (Unified Modeling
Language). Cases studies has shown that UML can improve the comprehensibility of a
project as well as the traceability on the code (Anda et al., 2006) but more recent research
shows that UML is slowly abandoned and especially on open source projects where the
usage of UML is very discouraging as it is only 0.28% (less than 1%!) according to Hebig
etal., 2016. The main reason seems to be that nowadays most projects are web applications
and they don’t make use of Object Orienting Programming (OOP) features because they
are not needed. UML can be very useful to describe a structure having classes, interfaces,
inheritance as their relations could be easily identified by just viewing the UML diagram.
However, in modern web applications languages and frameworks based on JavaScript are
being widely used for which UML diagrams wouldn’t add any value. In addition, in world
where microservices are almost everywhere, having a Model View Controller (MVC)
pattern, makes the use of UML unnecessary, as the requirements for an architecture
including microservices are focused on visualizing the communication between them and
other components.

The only domain where UML could still provide some added value is on projects
where there is a complex business logic implemented using OOP features. There are many
enterprise applications which are still using such approaches and UML could still be used
there. However, even for such cases, maintaining the UML diagrams during code changes
is a big challenge (Fernandez-Saez, Genero and Chaudron, 2013). UML diagrams should

ideally be synchronized with the code and some approaches have been suggested to

16

automatically sync UML diagrams and the source code (Cazzola, Ghoneim and Saake,

2006) but they haven’t managed to be established to the community.

2.3.5 TagSEA

In 2006, an interesting tool has been developed and its usage was evaluated having
interesting results (Storey et al., 2007). The tool was called TagSEA, which stands for
Tagging of Software Engineering Activities, and it let developers turn their comments into
navigatable waypoints. The tool was available as a plugin to Eclipse IDE and its concept
was very similar to CodeTour’ s one: Tagging code parts in the code, adding meta
information for the related code block and showing all the available tags (with grouping
feature) with ability to navigate on their location and see their meta information. An

example can be seen in the figure below:

&
&'
) TagsEaview.java | [J] TourEditor.java LD e =i
treeViewver.setGrayed(leaf, false): o
¥
}
//Btag tagsea.performance : this could be made faster if we didn't refresh
CheckboxTreeViewerGreyStateUpdater.initializeGravedState(treeViewer) ;
}
= public void setDescriptors(IResourcelaypointDescriptor[] descriptors) {
this.descriptors = descriptors; s
selectedVaypoints.addAll (Arrays. asList (descriptors)):;
calculateConflicts() &
< | 2|
LR % %% @ -0
Tags
| type filter text | Message Location Author Date
T-@® tagsea 78 ?, ﬁthis could be made Faster if we didn't ref... updateTreeGrayedState...
[+ -3 bug 66
&3 enhancement 1
&3 hack 1
[+ &3 import 2
[+ -$® parsed 1
@ performance 1
&9 todo 4 =3
& text 1 < J 2|
- g3 todo 18 ™| Tags: tagsea.performance Edit
Do | Writable Smart Insert | 476:9

Figure 2. TagSEA Eclipse Plugin

Although the idea of TagSEA was innovative, it didn’t get much publicity and as a
result it is not active anymore. However, some parts of its functionality have been adopted

by many IDEs, as for example the TODO tasks collection. On IntelliJ-based IDEs,

17

http://tagsea.sourceforge.net/index.html

comments that include the TODO or FIXME placeholders, are automatically being

collected and shown on a tree, on the TODO tool pane. An example is shown below.

=] Main.java
1 package org.jetbrains; v
2
3 P public class Main {
4
5 b public static void main(String[] args) {
6
7 System.out.println("Hello World!"); i |
8
9 //TODO Add some useful code here N | I— Single-line TODO comment
10
11 //FIXME Add more class files:
12 // - Player Multi-line TODO comment
13 // = NPC
14 // = Chicken
15 //Please be careful when you code! I— Regular comment line
16 ¥
17 }
18
Main > main()
TODO: Project CurrentFile Scope Based 2 — TODO tool window
Found 2 TODO items in 1 file
i org.jetbrains 2 items
¢ Main.java 2 items
Y (9, 11) //TODO Add some useful code here
. (11, 11) //FIXME Add more class files: TODO items
oL // - Player
1 | // - NPC
// - Chicken
i= 6:TODO & Docker Terminal @) Event Log

Figure 3. IntelliJ TODO Tool Window

18

3 Methodology

Having completed the related literature review, the methodology that was set up in
order to answer the Research Questions and accomplish the Research Objective, consisted
of the following 2 parts:

a) Creation and sharing a Survey to collect feedback from professional
Software Engineers and students
b) Development of CodeTour plugin for IntelliJ-based IDEs as an open source

repository friendly to any willing contributor.

3.1 Survey Tool

For conducting a Survey, the most commonly used tool is Google Forms as it well-
known, easy to use and supports all the basic requirements of a Survey.

However, for my case the option of Google Forms was inadequate due to the lack
of responsiveness and the limited design options. Having a Survey with responsive design
makes it much more accessible and as a result the potential target audience is increased.
Thus, | did some research and after evaluating some of the available options, | decided to

use SurveySparrow for my Survey.

SurveySparrow provides some very cool features, including custom survey
domain, advanced question types, animations and step by step progress and of a very nice
and responsive design that made the Survey looks very well both in browsers and mobile
screens. Of course, features like email notifications, “send me a copy of my response”
option, dashboard with analytics and charts and data export are supported.

A dedicated domain automatically created for the purpose of my Survey through
which I could create questions, design survey’s flow, share it and check results as well.

e The URL for my domain is: https://codetour.surveysparrow.com/ (requires

login as it is the management page)

e The link to the survey is: https://codetour.surveysparrow.com/s/code-

reading-challenges--best-practices/tt-080a698c44 (shared link for Survey)

3.2 Survey Questions

The Questions that were selected to be included on the survey were evaluated

taking into consideration whether their responses could potentially:

19

https://www.google.com/forms/about/
https://surveysparrow.com/
https://codetour.surveysparrow.com/
https://codetour.surveysparrow.com/s/code-reading-challenges--best-practices/tt-080a698c44
https://codetour.surveysparrow.com/s/code-reading-challenges--best-practices/tt-080a698c44

1) Answer a part of a Research Question, or provide some useful context

2) Indicate patterns or best practices followed by professional developers

and/or students

3) Evaluate the idea of creating a tool such as CodeTour (early feedback).

After the evaluation, the final questions have been collected and grouped into 3

sections:

1)

2)

3)

Demographic: To be used for Statistical Analysis of survey's answers, with
the ambition of ending up to meaningful results. Estimated time: <1 minute
Project Info: Users are prompted to select a project to have in their mind
for which you want to provide feedback for. The project could be either
their current or any past project. All the questions of this section were
related to that project. Estimated time: ~1 minute

Onboarding and Knowledge Transfer: Onboarding on new project is
challenging both from new joiner’s point of view and from instructor’s one.
The questions of this section, aim to identify habits and trends from both

aspects. Estimated time: ~7 minutes

The full Survey exported on a PDF file is available and can be accessed from here

Survey - Code Reading Challenges & Best Practices.pdf.

In addition, results (the responses) from this survey can be accessed from here

Results Report - Code Reading Challenges & Best Practices.pdf

3.3 Platform Investigation

For the implementation of the tool, a quick investigation of the available options

performed, in order to decide the IDE for which the plugin would be implemented for. The

following 3 options evaluated, and the highlights of their evaluation are depicted on the

following table (vV'=pros X =cons):
Table 1. IDE Candidates Evaluation

IDE

Evaluation

IntelliJ

v Open Source

v/ Documentation

v Widely used by professionals (including myself)

20

https://github.com/LefterisXris/CodeTour/files/8987880/Survey.-.Code.Reading.Challenges.Best.Practices.-.vertical.pdf
https://github.com/LefterisXris/CodeTour/files/8987888/Results.Report.-.Code.Reading.Challenges.Best.Practices.pdf
https://www.jetbrains.com/idea/

v Multiple IDEs (PyCharm, WebStorm, CLion, GoLand etc)

VS Code v Open Source

v/ Documentation

v/ Widely used by professionals

Familiarity (personal usage)

X Existence of similar extension

Eclipse v/ Open Source

X Documentation

X Rarely used by professionals nowadays

The prevailing IDE turned out to be IntelliJ, developed by JetBrains which is the
main contributor and community orchestrator for the open source IntelliJ Community

edition IDE (Github source code repository).

In case there was no similar extension, VS Code would probably be selected,
because it provides the great feature of being able to run as an embedded web code editor.
In simple words that means that VS Code can be launched on any modern browser having
the preferred settings and extensions of a developer (requires login) making it a portable

editor with no need for any installation.

21

https://code.visualstudio.com/
https://www.eclipse.org/
https://www.jetbrains.com/idea/
https://github.com/JetBrains/intellij-community

4 Survey Results Analysis

The Survey was promoted to many different channels, including LinkedIn,
Facebook, Reddit, direct email on Software Companies and University students. In total
81 answers have been received for the Survey. The dashboard’s home screen of provided

a summary of the responses:

Explore the data behind your survey responses. Gain a better perspective of your survey G%
data and uncover insights for further planning. i B
| Visited \ Started
(©) Avg Time to Complete () Completed
o]
m 0

[EL, Completion Rate

100.00%

Figure 4. Survey Summary
The length of the survey was quite long, as the average time for the 81 respondents
needed to complete was 9 minutes. However, every single respondent that started the
survey, successfully completed it (100% completion rate)! This high rate is probably due
to the warning message that the Survey provided to respondents before starting, defining

the target audience, and prompted them to continue only if they are included on it.
4.1 Source of Responses

The various responses came from different channels, but in majority they source
was social media links. This was tracked using Survey Sparrow’s feature for shared links
which provides the ability to create different links to the same Survey but with some meta-
data that they simply register the source name as defined on shared link creation. The

shared link dashboard for CodeTour’ s Survey (including their responses) is the following:

22

> CodeReadingC... ©@BuUILD > @INTEGRATE > @ SHARE RESULTS

Web Link Shares Create New Share
< All Shares
[Email Share)) _
Web Link Share - SurveySwap 1 24 January 202207:17PM Active Ij
[Y: Email Embed Share))) _
Web Link Share - Reddit 3 23 January 2022 11:26 PM Active I[j
@ Web Link Share u Web Link Share - DV 1 21 January 2022 01:02AM Active Iy m
5 Social Share Web Link Share - Viber 6 20 January 2022 115S0PM Active |3y m
Facebook Share . . . _
Web Link Share - Github o 20 January 2022 10:55 PM Active Ij
Twitter Share)) -
Web Link Share - Facebook 50 20 January 2022 10:31 PM Active Iy
=
=o Embed Share Web Link Share - Linkedin 16 20January20220%:31PM Active |y m
E) sMs share Web Link Share 4 17 January 2022 08:11PM Active Iy m

2% QR CODE Share
SDK Mobile SDK Share

4" Slack Share

Figure 5. Survey Response Sources

Note: The Facebook link includes the responses that came from direct emails to
some students as the same link used on the email.

Another interesting meta-info that SurveySparrow provides, is the device source.
As the below diagram indicates, the responses were almost equally distributed into mobile
(41/51%) and computer (39/48%) while there was just 1 answer from a tablet. The high
number of mobile responses, indicates the importance of having a responsive Survey, as it
seems that many people prefer to use their mobile phones to answer surveys and especially

if they find the survey on a social media platform.

23

Device Sources

B MOBILE
B COMPUTER

W TABLET

Figure 6. Survey Device Sources

4.2 UML Usage

Regarding UML and its usage, results show that UML is indeed not used that much
nowadays and also it is not the preferred way for reading a project. This can be verified by
3 related questions: a) the direct UML usage question (question 14), b) the
tool/methodology assistance evaluation (question 15) and c) the open source contributing
pattern (question 16) for which the available options “UML diagrams - for better
understanding the designed structure” and “Read UML diagrams - to check where your

feature could be added” respectively were both ranked last.

Are there any UML diagrams for the
Project?

Yes 23%

HNo

HYes

No 77%

Figure 7. Survey UML Usage

24

4.3 Patterns and Methodologies for Code Reading

In order to extract some useful results related to Code Reading the responses to
following 2 Survey questions were analyzed:

e Consider that you came up with a cool feature on an Open Source project,
and you want to contribute on it, to implement it. However, you don't have
anyone to provide you information directly, and you have limited time, so
you need to do your contribution without spending too much time. Which
of the following actions, would you prefer doing, in order to get the "quick
win™? (Question 16, 4 options)

e Consider that you are responsible for the 1st week of training of a new
member on your Project (the project you selected before). Which of the
following, would you provide to your colleague, for that early stage?
Please select only those that are available to your Company and your
selected Project. (Question 17, 6 options)

For fast contributions to open source projects, no clear preference or trend was

identified, as there seems to be a balance between the given options.

M Run the application and try to spot similar
features (probably with debugger
enabled), in order to understand how the
work, and start your implementation
based on them

M Navigate to the code, starting from a fixed
entry point (e.g. a breakpoint) and trying
to find out the logic, by following method
calls, definitions etc

W Read Technical docs - tofind the assets
you need for your implementation

M Read UML diagrams - to check where your
feature could be added

Figure 8. Survey Open Source Contribution Preferences
When it comes to onboarding, there seems to be a clear preference on One-to-One

trainings where project is demonstrated and code is explained in detail.

25

Onboarding Preferences

OTHER

MINOR CODE TASKS/EXERCISES - SELF PACED
TECHNICAL DOCS - SELF PACED

FUNCTIONAL DOCS - SELF PACED

EXTERNAL DOCUMENTATION (WIKI PAGES, MKDOCS, PDF, PPT)
- SELF PACED

ONE-TO-ONE GUIDANCE (INCLUDING APP AND CODE
DEMONSTRATION)

| | [| |
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 9. Survey Onboarding Preferences
An interesting challenge here is to find the relation between the time needed for
One-to-One compared to the time needed for maintaining documentation and training
material (all the other options) because that time might eventually be more than the One-

to-One would need.

4.4 Comprehensibility Factors

To identify factors that could affect Comprehensibility, respondents were asked to
provide their rating for any of the available options (Question 15, 12 options). If a project
uses good and consistent naming conventions for classes, packages, variables etc and in
general it is well structured, that is considered a good factor and in conjunction with good
quality of documentation (both inline and external documentation) makes a project very
comprehensible.

Another interesting result is the confirmation of the concept that the level of a
developer affects the time they need to onboard. That means, that the more senior level the

developer is, the less time they will need to onboard as shown below.

26

Onboarding Time Estimation

8,6
5,9
a5
JUNIOR MID-SENIOR SENIOR

==g==Time to for a new member to be Productive (months) ==@==Team effort to Onboard a new member (mandays)

Figure 10. Survey Seniority Level and Onboarding Time

4.5 CodeTour Early Feedback

Some early feedback has been received for CodeTour both directly and indirectly.
Initially, the responses on the favorite IDE question in which IntelliJ and VS Code are
clearly more famous compared to the others with IntelliJ being first with small difference.

Thus, CodeTour’s target IDE could be IntellilJ.

Main code editor you are using for the Project

OTHER

NETBEANS

VISUAL STUDIO

ECLIPSE

VS CODE

INTELLIJ {ANY PRODUCT)

0% 5% 10% 15% 20% 25% 30% 35% 40%

Figure 11. Survey Favorite IDE

27

For the direct part, respondents were asked to evaluate how useful would a tool
such as CodeTour could be, by providing them the description of the tool and its features.
The question was Rate questions (0-5). Having an average of 4.1/5 (82% agree) CodeTour

sounds good as an idea and thus implementing such a tool, could probably worth it.

CodeTour Idea Rating

RATE

0,00 1,00 2,00 3,00 4,00 5,00

Figure 12. Survey CodeTour Idea Rating

28

5 Code Tour — Plugin

5.1 Introduction

CodeTour is a plugin, that provides the ability to record and play back guided
walkthroughs of a project’s codebase. It's like a table of contents, that can make it easier
to onboard (or re-board) to a new project/feature area, visualize bug reports, or understand
the context of a code review/PR change. A Code Tour is simply a series of interactive
Steps, each of which is associated with a specific file/line, and includes a description of
the respective code. This allows developers to clone a repo, and then immediately start
learning it, without needing to rely on others for direct assistance. Tours can be version

controlled into a repo, to enable sharing with other contributors.
5.2 Origin

The idea of such a tool originally came to my mind, when | was member of the
Development team of a startup company, in which we used to build a whole new Software
Product from scratch. In the beginning everything was fine, as we were 7 Developers
dedicated to our project but after a while, our company started to grow and we needed
more and more stuff. After hiring a couple of developers, we noticed that the onboarding
process was very time consuming for us and not so effective for our new hired colleagues.
Our Project had grown so much, that it was very challenging even for us to explain it to
new joiners, as there were many aspects of the project that were not easy to be fully
grasped.

Every developer that was with us from company’s day 1, was confident enough for
our project, as we were a small team with great communication and very good skills. Our
challenge was to make the new joiners productive as soon as possible, and obviously, with
the lowest possible effort, as requirements and due dates were kept coming.

Unfortunately, that was not the case for us. Each new joiner, was dependent to us
for almost anything: Preparing their development environment, their local environment for
running the application, building the application along with each of their
component/service, and ultimately understanding the business logic and how it was
implemented on our project. There were many times when we wondered what we could
do in order to help our new colleagues be more confident and productive. Obviously,
“private lessons” was not an option, as the working pace on Startup companies especially

on early stages is often very high.

29

So, one day we had a conversation as a team, in order to evaluate our options for
this challenge. Many options were mentioned as for example the VVideo Recordings or the
extended Training Material but unfortunately, they couldn’t fit to our case. The pros and
cons of the evaluated options are briefly described on the following table.

Table 2. Evaluated Options for Onboarding

Evaluated Option Pros Cons

Video Recordings - Record once, Playback - Hard to maintain due to code
multiple times changes as editing only parts of a
- Explanation and Code video
Navigation - Detailed Explanation requires

- Self-Paced (for the new much time to generate (good

joiner) preparation, multiple shots,
- Efficiency editing)

Training Material - Multiple levels (could be | - Maintenance

- Presentation Decks separated be service, per - Outside IDE

- External Documentation | level etc) - Efficiency (such documentation
- Self-Paced is good but not sufficient)

As our project was rapidly evolving, including new features, refactors, more
components etc, we didn’t have much time to properly prepare any of the available options.
It was those days when | thought that this was a really big issue, because such cases:

e Slow down our development speed (as individuals)

e Slow down our overall progress (at least until new joiners will become
productive and caught up with the “cost” we invested for our time). More
communication, less development

e Pose a potential threat for business continuity in case development team
was entirely replaced (eventually)

| thought it would be great if somehow, we were able to provide our new joiners a
tool through which they can navigate to our project’s code and having some explanation
at the same time for the context of the specific part/logic. Thus, that was the main reason

due to which I proposed the topic of the current Thesis.

| had great expectations for this plugin, and | was sure that developers will love the

tool, and | was very happy that I will be the one who will create it! When | started my

30

research, | also created the Github repository for the plugin, which | originally named it
CodeTrailer as | thought it was catchy enough to stimulate developers’ interest.

However, after some research | came across a great VS Code extension with the
name CodeTour, authored by Microsoft. This extension was very similar to what | was
envisioned and unfortunately there was someone who has built it before me. Well, that was
a small disappointment to me, but I thought that there is still the opportunity to implement
the same tool on JetBrains related IDEs. And so | did! | changed my plans, renamed Github
repo to CodeTour, and focused only to IntelliJ platform.

Note: As there are actually 2 different tools with the same name, any reference to
CodeTour might be confusing. Thus, to make it clear, from now and on:

e CodeTour indicates my CodeTour - IntelliJ plugin while

e VS Code CodeTour indicates the CodeTour — VS Code Extension

However, it is important to mention that CodeTour and VS Code CodeTour are not

competitor tools. They are supposed to offer similar functionality but to different IDEs.

5.3 Features

As mentioned, CodeTour is available for free for both VS Code and for all IntelliJ-
based products and can be found:
e CodeTour: CodeTour - IntelliJ IDEs Plugin | Marketplace (jetbrains.com)
e VS Code CodeTour: CodeTour - Visual Studio Marketplace

CodeTour is currently in version v0.0.3 (always check the latest) in which the
minimum required functionality has been implemented and the supported features are
briefly the following:

e Tree-like View of Tours and their Steps on a Tool Window

e Code Navigation with single click (on Steps available on Tours Tree)

e Shortcuts for Navigating on Previous and Next Steps

e Easy new Steps Creation through Editor's Gutter context menu (similar to adding
breakpoints)

e Enhanced Step Editor, supporting Markdown and HTML for description along

with real time Preview Mode

31

https://plugins.jetbrains.com/plugin/19227-codetour
https://marketplace.visualstudio.com/items?itemName=vsls-contrib.codetour
https://github.com/LefterisXris/CodeTour/releases/tag/v0.0.3
https://github.com/LefterisXris/CodeTour/releases/latest

e Customizable (location, size, font etc) Popup Window for Step's description

e Version Controlled Tours for sharing/maintaining them

Some extra features have been registered and will soon be implemented from which
the most important are probably:
1. Nested Tours
2. Export Tour on independent navigatable file
3. Navigate on a Directory/Package in Project Structure View
4. Selecting code block as a Step (instead of just file:line)

5. Dynamically Step update, on code changes

Full list of Open Issues (including bugs and features) is available on Github

repository https://github.com/LefterisXris/CodeTour/issues

The Repository is Open Source so extra features may be implemented based on
Community’s requests. Further information about CodeTour’s repository can be found on

the related section 5.4.2.

5.3.1 Features Comparison
VS Code CodeTour is already 2 years old and is obviously a more mature project
with more than 50 versions so far. The initial version was released on 08/03/2020 and since

then many features have been implemented.

Comparing to CodeTour’s current state, VS Code CodeTour has some additional
features some of which are very nice:

e Code Block Selection: Instead of simply navigating on a file:line, a Step can

navigate and highlight a specific code block

e Special Elements: On a Step’s description special elements can be added. They will

be rendered as links and on click some functionality is provided, for example
o Open File -- opens a specific file
o Open Tour/Step -- opens the linked Tour or Step
o Insert Code -- inserts a code block on the current cursor location (very

useful for tutorials)

32

https://github.com/LefterisXris/CodeTour/issues

o Shell Command -- executes a shell command e.g., mvn clean install,
npm install or even a custom command!

e Exporting Tours: exports a single tour file, that contains the steps along with some

extra context (typically 5 lines before and 5 lines after Step’s location) of the related
code, so that anyone can see that tour, without having the whole code

e Maintenance Automation Watcher: Github Action and Azure Pipeline for checking

whether any tour is invalid (i.e., targets an invalid file, line or code block) to ensure
that version controlled tours are always maintained

e Customization: Configurable settings for extension’s behaviour, like Show
Markers enable/disable and setting a Custom Directory where all tours reside
instead of the default .tours directory.

Most of these features, are going to be implemented sooner or later on CodeTour.
Ideally, both tools should have similar features and also it would be nice if there is
compatibility between them, meaning that Tours created on a project using VS Code could

also work for the same project if IntelliJ-based IDE is used.

5.4 Implementation

CodeTour is built using IntelliJ Ultimate edition. Its source code is mainly written
in Java (92%) and there are some small code parts written in Kotlin (8%).

Developing an IntelliJ plugin, requires to have the IntelliJ Platform SDK (open
source) as base dependency (provided) and some specific structure common for all plugins.
This basic structure, along with many tutorials and all the available documentation of
IntelliJ Platform SDK is kindly provided by JetBrains on their official documentation site:

https://plugins.jetbrains.com/docs/intellij/welcome.html. JetBrains team has made a very

good job on providing material and guidance for anyone interested to develop their own
plugin. As a result, almost everything that 1 needed it was already defined on their
documentation.

Gradle is being used as build tool for CodeTour and also Gradle Kotlin DSL is

configured by default, providing powerful scripting and automation over Gradle.

5.4.1 Under The Hood

The general concept of CodeTour’s implementation is the following:

33

https://plugins.jetbrains.com/docs/intellij/welcome.html
https://docs.gradle.org/current/userguide/kotlin_dsl.html

A Tour represents a group of Steps in a specific order. Holds extra
information for its title, description and filename.

A Step carries information for the location to navigate formatted as
filename:line (e.g., Main.java:15), the description to render as Step’s
explanation and its title.

All Tours are visible on CodeTour Tool window as a Tree with each Tour
being one branch of the Tree and each Tour having multiple branches for
their Steps.

New Tours can be created directly from the Tree through its context menu
(right click on Tree’s root)

Steps can be easily added on a Tour, by simply using the Editor’s Gutter
context menu (right click on the file:line where the Step should point to)
which will spawn a dialog so that developer can input the title and the
description of the Step.

Developers can use the Tree to initiate the navigation, by expanding the
Tour they want and just selecting the first (or any other) Step. As soon as a
Step is selected, IDE immediately opens the related file, navigates the user
to the appropriate line and renders the Step’s description on a separate
popup Window.

Each Tour is persisted on a separate file with .tour extension. This file
includes all the Steps for that Tour. Its structure is based on JSON.

The base directory under which all Tours are persisted, is the .tours
directory under Project’s root (it is automatically be created if it doesn’t

exist).

Further implementation details are provided below for the most important parts of

CodeTour’s source code.

5.4.1.1 Plugin.xml

The file plugin.xml, is required for any plugin and it holds information related to
the declaration of a Plugin including actions, icons, shortcuts and services. It is located
under resources/META-INF directory and it is the most important file of any IntelliJ
plugin. The basic structure of a plugin.xml follows as an example, while more information

can be found on Plugin Configuration File Documentation.

34

https://github.com/LefterisXris/CodeTour/blob/main/src/main/resources/META-INF/plugin.xml
https://plugins.jetbrains.com/docs/intellij/plugin-configuration-file.html?from=IJPluginTemplate

Code Block 1. Plugin.xml Structure

<idea-plugin>
<id>org.uom.lefterisxris.codetour</id>
<name>CodeTour</name>
<vendor>lefterisxris</vendor>
<depends>com.intellij.modules.platform</depends>
<extensions defaultExtensionNs >

</extensions>

<applicationListeners>

</applicationListeners>

<actions>

</actions>

</idea-plugin>

5.4.1.2 Tour Definition

Tour is defined in class Tour.java under domain package, and has the following
fields:
Table 3. Tour Definition

Field Description

id A random UUID for uniqueness

title Tour’s title, visible on the Tree

tourFile The filename that this Tour will be persisted in
description A description of the Tour

steps List with all the Steps of the Tour in the given order

5.4.1.3 Step Definition

Step is defined in class Step.java under domain package, and has the following
fields:
Table 4. Step Definition

Field Description

title Step’s title, visible on the Tree

description Step’s description. Can be MARKDOWN, HTML or simple text
file The file reference that the Step should open

line The specific line to which the Step should Navigate the developer

35

https://github.com/LefterisXris/CodeTour/blob/main/src/main/java/org/uom/lefterisxris/codetour/tours/domain/Tour.java
https://github.com/LefterisXris/CodeTour/blob/main/src/main/java/org/uom/lefterisxris/codetour/tours/domain/Step.java

Code Block 2. Tour Structure Example

"id": "70abde@f5-3fb7-4309-a9bf-97afeb28aadb",
"tourFile": "sampleTour.tour",

"title": "Sample Tour",

"description": "A Sample Tour",

"steps": [

{

"title": "A Step 1",
"description": "# A Title\n\nThis is **Step 1**!I1"
"file": "Main.java",
"line": 14

"title": "A Step 2",

"description": "# Another Title\n\nThis is **Step 2**!1"
"file": "Main.java",

"line": 28

5.4.1.4 StateManager

Tours and their related Steps are persisted and managed through the class

StateManager.java. In general, all CRUD operations (Create, Read, Update, Delete) for
them are handled by StateManager. For Read and Write operations Google’s GSON library
is being used, as both Tour and Step classes are serialized as JSON formatted objects and
stored in .tour files.

CRUD operations are always performed within a transaction, using an API
provided by IntelliJ. For example, to write into a file, the operation should be registered
within a WriteAction.runAndWait(()->{...}) block. Example of persisting a Tour into a
file:

Code Block 3. Persisting a Tour
WriteAction.runAndwait (() -> {

VirtualFile vfile = toursDir.createChildData (fileName)

vfile.setBinaryContent (.toJson (tour) .getBytes ())
reloadState ()

})

36

https://github.com/LefterisXris/CodeTour/blob/main/src/main/java/org/uom/lefterisxris/codetour/tours/state/StateManager.java
https://github.com/google/gson

In addition, StateManager holds the information for the active Tour and the active
Step, which in simple words shows the Step to which the user navigated last. This
information is required for Previous/Next Step actions to be functional.
5.4.1.5 Tours Tree

To add a custom ToolWindow on IntelliJ Platform, the ToolWindowFactory
interface should be implemented in order to register a factory which will create the
ToolWindow. CodeTour’s factory class is ToolPaneWindowFactory.java which is used as

factory for the ToolPaneWindow.java class.

The ToolPaneWindow, uses the StateManager to load the available Tours, creates
a component of Tree type (internal IntelliJ component) for which the TreeRenderer.java is

registered as Cell renderer (i.e. responsible for how the Tree will rendering). Listeners are
registered on the Tree in order to provide the single-click Navigation and also Context
menu actions for Tours and Steps.

Finally, ToolPaneWindow subscribes to 2 messaging channels for listening on
changes that require Tree re-render. Messaging APl (MessageBus) is provided by IntelliJ
and handled internally. An example follows and more info can be found here Messaging

Infrastructure (jetbrains.com).

Code Block 4. Example of Messaging API — Subscribe

.getMessageBus ()
.connect ()
.subscribe (TourUpdateNotifier.

reloadState ()
createToursTee ()
tTourLastStep (tour)

Code Block 5. Example of Messaging API — Publish

tMessageBus ()

project.g
o€

et
.syncPublisher (TourUpdateNotifier.
ourUpdated (activeTour.get ())

5.4.1.6 Step Generator

The TourStepGeneratorAction.java is responsible for handling the Step creation

taking advantage the Editor’s Gutter menu. To implement the required functionality, the

class should extend IntelliJ’s AnAction interface, and also be registered as action on

37

https://github.com/LefterisXris/CodeTour/blob/main/src/main/java/org/uom/lefterisxris/codetour/tours/ui/ToolPaneWindowFactory.java
https://github.com/LefterisXris/CodeTour/blob/main/src/main/java/org/uom/lefterisxris/codetour/tours/ui/ToolPaneWindow.java
https://github.com/LefterisXris/CodeTour/blob/main/src/main/java/org/uom/lefterisxris/codetour/tours/ui/TreeRenderer.java
https://plugins.jetbrains.com/docs/intellij/messaging-infrastructure.html
https://plugins.jetbrains.com/docs/intellij/messaging-infrastructure.html
https://github.com/LefterisXris/CodeTour/blob/main/src/main/java/org/uom/lefterisxris/codetour/tours/actions/TourStepGeneratorAction.java

plugin.xml along with its desired place to let IntelliJ platform know where to add that
action.

Whenever a developer uses that Action, CodeTour retrieves automatically the file
and the line of the location they selected, by taking advantage of the VIRTUAL_FILE and
the EditorGutter.LOGICAL_LINE_AT_CURSOR as datald from the action event and
registers it as the location reference for the Step. After that, a dialog pops up to the
developer in order to input Step’s information. The dialog is of type StepEditor which is
described below.

Code Block 6. Getting File and Line from Editor Gutter

int line = e.getDataContext ()
.getData (

VirtualFile virtualFile = e.getDataContext ()
.getData (CommonDataKeys.

5.4.1.7 Step Editor

Step Editor.java is a custom implementation of DialogWrapper and its purpose is

to provide a friendly Ul to the developer to insert their Step. Step Editor’s description field
can support MARKDOWN, HTML and of course simple text. The description will be
properly formatted when it will be shown to the Developer through the Step Renderer.
However, Step Editor is equipped by a Preview tab in which the description is rendered
exactly as in Step Renderer, so that the Developer can check how Step’s description will

look like when rendered.

5.4.1.8 Step Renderer

Similarly, StepRenderer.java is also a custom implementation of DialogWrapper,

and its purpose is to popup a dialog, having rendered Step’s description.

This dialog stores User Settings regarding the location and the size of the dialog
window, to reuse it for all next steps, giving a smoother user experience this way. The
internal class UserSettings is used for this purpose.

Step’s description can be either MARKDOWN, HTML or simple text. In any case
Step Renderer makes use of a MarkdownParser class, provided by IntelliJ platform,
through which it transforms any MARKDOWN text to HTML and then HTML is properly

rendered on the dialog component having the appropriate format.

38

https://github.com/LefterisXris/CodeTour/blob/main/src/main/java/org/uom/l