-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathG2S_multistep.py
236 lines (219 loc) · 11.5 KB
/
G2S_multistep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
from gcn_layer import *
import tensorflow as tf
from lib.metrics import MAE, RMSE, MAPE, MARE, R2
def Conv_ST(inputs, supports, kt, dim_in, dim_out, activation):
'''
:param inputs: a tensor of shape [B, T, N, C]
:param supports:
:param kt: temporal convolution length
:param dim_in:
:param dim_out:
:return:
'''
T = inputs.get_shape().as_list()[1]
num_nodes = inputs.get_shape().as_list()[2]
assert inputs.get_shape().as_list()[3] == dim_in
if (dim_in > dim_out):
w_input = tf.get_variable(
'wt_input', shape=[1, 1, dim_in, dim_out], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer())
tf.add_to_collection(name='weight_decay', value=tf.nn.l2_loss(w_input))
res_input = tf.nn.conv2d(inputs, w_input, strides=[1, 1, 1, 1], padding='SAME')
elif (dim_in < dim_out):
res_input = tf.concat(
[inputs, tf.zeros([tf.shape(inputs)[0], T, num_nodes, dim_out - dim_in])], axis=3)
else:
res_input = inputs
# padding zero
padding = tf.zeros([tf.shape(inputs)[0], kt - 1, num_nodes, dim_in])
# extract spatial-temporal relationships at the same time
inputs = tf.concat([padding, inputs], axis=1)
x_input = tf.stack([inputs[:, i:i + kt, :, :] for i in range(0, T)], axis=1) #[B*T, kt, N, C]
x_input = tf.reshape(x_input, [-1, kt, num_nodes, dim_in])
x_input = tf.transpose(x_input, [0, 2, 1, 3])
if (activation == 'GLU'):
conv_out = graph_conv(tf.reshape(x_input, [-1, num_nodes, kt * dim_in]),
supports, kt * dim_in, 2 * dim_out)
conv_out = tf.reshape(conv_out, [-1, T, num_nodes, 2 * dim_out])
out = (conv_out[:, :, :, 0:dim_out] + res_input) * \
tf.nn.sigmoid(conv_out[:, :, :, dim_out:2 * dim_out])
if (activation == 'sigmoid'):
conv_out = graph_conv(tf.reshape(x_input, [-1, num_nodes, kt * dim_in]),
supports, kt * dim_in, dim_out)
out = tf.reshape(conv_out, [-1, T, num_nodes, dim_out])
# out = tf.nn.relu(conv_out + res_input)
return out
def LN(y0, scope):
# batch norm
size_list = y0.get_shape().as_list()
T, N, C = size_list[1], size_list[2], size_list[3]
mu, sigma = tf.nn.moments(y0, axes=[1, 2, 3], keep_dims=True)
with tf.variable_scope(scope):
gamma = tf.get_variable('gamma', initializer=tf.ones([1, T, N, C]))
beta = tf.get_variable('beta', initializer=tf.zeros([1, T, N, C]))
y0 = (y0 - mu) / tf.sqrt(sigma + 1e-6) * gamma + beta
return y0
def attention_t(query, values, scope):
'''
:param query: a tensor shaped [B, Et]
:param values: a tensor shaped [B, T, H*W, F]
:return:
'''
Et = query.get_shape().as_list()[1]
T = values.get_shape().as_list()[1]
N = values.get_shape().as_list()[2]
F = values.get_shape().as_list()[3]
values_in = tf.reshape(values, [-1, T, N*F]) #[B, T, N*F]
values_in = tf.transpose(values_in, [0, 2, 1]) #[B, N*F, T]
values = tf.transpose(values_in, [2, 0, 1]) # [T,B,N*F]
with tf.variable_scope(scope):
Wv = tf.get_variable('Wv', shape=[T, N*F,1], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer())
bias_v = tf.get_variable('bias_v', initializer=tf.zeros([T]))
Wq = tf.get_variable('Wq', shape=[Et, T], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer())
value_linear = tf.reshape(tf.transpose(tf.matmul(values, Wv), [1,0,2]), [-1, T])
#score = tf.nn.tanh((value_linear + bias_v) + tf.matmul(query, Wq))
score = tf.nn.tanh((value_linear + bias_v) + tf.matmul(query, Wq))
score = tf.nn.softmax(score, dim=1) # shape is [B,T]
values = tf.matmul(values_in, tf.expand_dims(score, axis=-1)) # [B,N*F,1]
values = tf.reshape(tf.transpose(values, [0, 2, 1]), [-1, 1, N, F])
return values
def attention_c(query, values, scope):
'''
:param query: a tensor shaped [B, Et]
:param values: a tensor shaped [B, 1, H*W, F]
:return:
'''
Et = query.get_shape().as_list()[1]
N = values.get_shape().as_list()[2]
F = values.get_shape().as_list()[3]
values_in = tf.reshape(values, [-1, N, F])
values = tf.transpose(values_in, [2, 0, 1]) #[F,B,N]
with tf.variable_scope(scope):
Wv = tf.get_variable('Wv', shape=[F, N,1], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer()) #[F,N,1]
bias_v = tf.get_variable('bias_v', initializer=tf.zeros([F]))
Wq = tf.get_variable('Wq', shape=[Et, F], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer())
value_linear = tf.reshape(tf.transpose(tf.matmul(values, Wv), [1, 0,2]), (-1, F))
score = tf.nn.tanh((value_linear + bias_v) + tf.matmul(query, Wq))
score = tf.nn.softmax(score, dim=1) #shape is [B,F]
values = tf.matmul(values_in, tf.expand_dims(score,axis=-1)) #[B,N,1]
return values
class Graph(object):
def __init__(self, adj_mx, params, is_training):
# self.adj_mx = adj_mx
self.supports = np.float32(Cheb_Poly(Scaled_Laplacian(adj_mx), 2))
self.params = params
C, O = params.closeness_sequence_length, params.nb_flow
H, W, = params.map_height, params.map_width
Et, Em = params.et_dim, params.em_dim
Horizon = params.horizon
self.c_inp = tf.placeholder(tf.float32, [None, C, H, W, O], name='c_inp')
inputs = tf.reshape(self.c_inp, [-1, C, H * W, O]) # [batch, seq_len, num_nodes, dim]
self.et_inp = tf.placeholder(tf.float32, (None, Horizon, Et), name='et_inp')
self.labels = tf.placeholder(tf.float32, shape=[None, Horizon, H, W, O], name='label')
labels = tf.reshape(self.labels, (-1, Horizon, H * W, O))
#long term encoder, encoding 1 to 12
with tf.variable_scope('block1'):
l_inputs = Conv_ST(inputs, self.supports, kt=3, dim_in=O, dim_out=32, activation ='GLU')
l_inputs = LN(l_inputs, 'ln1')
with tf.variable_scope('block2'):
l_inputs = Conv_ST(l_inputs, self.supports, kt=3, dim_in=32, dim_out=32, activation='GLU')
l_inputs = LN(l_inputs, 'ln2')
with tf.variable_scope('block3'):
l_inputs = Conv_ST(l_inputs, self.supports, kt=3, dim_in=32, dim_out=32, activation='GLU')
l_inputs = LN(l_inputs, 'ln3')
with tf.variable_scope('block4'):
l_inputs = Conv_ST(l_inputs, self.supports, kt=3, dim_in=32, dim_out=32, activation='GLU')
l_inputs = LN(l_inputs, 'ln4')
with tf.variable_scope('block5'):
l_inputs = Conv_ST(l_inputs, self.supports, kt=3, dim_in=32, dim_out=32, activation='GLU')
l_inputs = LN(l_inputs, 'ln5')
with tf.variable_scope('block6'):
l_inputs = Conv_ST(l_inputs, self.supports, kt=2, dim_in=32, dim_out=32, activation='GLU')
l_inputs = LN(l_inputs, 'ln6')
#short term encoder, working differently for training and testing
preds = []
window = 3
if is_training == True:
label_padding = inputs[:, -window:, :, :]
padded_labels = tf.concat((label_padding, labels), axis=1)
print(padded_labels.shape)
padded_labels = tf.stack([padded_labels[:, i:i + window, :, :] for i in range(0, Horizon)], axis=1)
print('shape of padded labels:', padded_labels.shape) # [B, Horizon, window, H*W, O]
for i in range(0, Horizon):
s_inputs = padded_labels[:, i, :, :, :] #[B, window, N, O]
et_inp = self.et_inp[:, i, :]
with tf.variable_scope('horizon'+str(i)):
with tf.variable_scope('block7'):
gs_inputs = Conv_ST(s_inputs, self.supports, kt=3, dim_in=O, dim_out=32, activation='GLU')
gs_inputs = LN(gs_inputs, 'ln7')
'''
with tf.variable_scope('block8'):
gs_inputs = Conv_ST(gs_inputs, self.supports, kt=3, dim_in=32, dim_out=32, activation='GLU')
gs_inputs = LN(gs_inputs, 'ln8')
'''
with tf.variable_scope('block9'):
gs_inputs = Conv_ST(gs_inputs, self.supports, kt=3, dim_in=32, dim_out=32, activation='GLU')
gs_inputs = LN(gs_inputs, 'ln9')
ls_inputs = tf.concat((gs_inputs, l_inputs), axis=1)
print(ls_inputs.shape)
ls_inputs = attention_t(et_inp, ls_inputs, 'attn_t')
if params.nb_flow == 1:
pred = attention_c(et_inp, ls_inputs, 'dim1')
if params.nb_flow == 2:
pred = tf.concat((attention_c(et_inp, ls_inputs, 'dim1'),
attention_c(et_inp, ls_inputs, 'dim2')), axis=-1)
preds.append(pred)
else:
label_padding = inputs[:, -window:, :, :]
for i in range(0, Horizon):
s_inputs = label_padding
et_inp = self.et_inp[:, i, :]
with tf.variable_scope('horizon' + str(i)):
with tf.variable_scope('block7'):
gs_inputs = Conv_ST(s_inputs, self.supports, kt=3, dim_in=O, dim_out=32, activation='GLU')
gs_inputs = LN(gs_inputs, 'ln7')
'''
with tf.variable_scope('block8'):
gs_inputs = Conv_ST(gs_inputs, self.supports, kt=3, dim_in=32, dim_out=32, activation='GLU')
gs_inputs = LN(gs_inputs, 'ln8')
'''
with tf.variable_scope('block9'):
gs_inputs = Conv_ST(gs_inputs, self.supports, kt=3, dim_in=32, dim_out=32, activation='GLU')
gs_inputs = LN(gs_inputs, 'ln9')
ls_inputs = tf.concat((gs_inputs, l_inputs), axis=1)
print(ls_inputs.shape)
ls_inputs = attention_t(et_inp, ls_inputs, 'attn_t')
if params.nb_flow == 1:
pred = attention_c(et_inp, ls_inputs, 'dim1')
if params.nb_flow == 2:
pred = tf.concat((attention_c(et_inp, ls_inputs, 'dim1'),
attention_c(et_inp, ls_inputs, 'dim2')), axis=-1)
label_padding = tf.concat((label_padding[:, 1:,:,:], tf.expand_dims(pred, 1)), axis=1)
preds.append(pred)
self.preds = tf.stack(preds, axis=1)
first_pred = preds[0]
first_label = labels[:, 0, :, :]
first_loss = tf.nn.l2_loss(first_pred - first_label)
self.loss = tf.nn.l2_loss(self.preds - labels)
#self.loss = tf.nn.l2_loss(self.preds - labels) + first_loss
self.optimizer = tf.train.AdamOptimizer(learning_rate=params.lr, beta1=params.beta1, beta2=params.beta2,
epsilon=params.epsilon).minimize(self.loss)
self.mean_rmse = RMSE(self.preds, labels) * params.scaler
self.mae = []
self.rmse = []
self.mape = []
self.r2 = []
trues = tf.unstack(labels, axis=1)
for _, (i, j) in enumerate(zip(preds, trues)):
mae = MAE(i, j) * params.scaler
self.mae.append(mae)
rmse = RMSE(i, j) * params.scaler
self.rmse.append(rmse)
mape = MAPE(i, j, params.scaler, mask_value=10)
self.mape.append(mape)
r2 = R2(i, j)
self.r2.append(r2)