-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_data.py
98 lines (83 loc) · 2.82 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# -*- coding: utf-8 -*-
"""
Created on Sun May 26 16:40:13 2019
@author: LeoChu
"""
from __future__ import print_function
import numpy as np
np.random.seed(1337)
import os
import scipy.io as sio
import random
def load_data(path):
# print(path)
mats = os.listdir(path)
row, totalCol = 60, 300000
samples = round(totalCol / row)
num = int(len(mats) * totalCol / row)
data = np.empty((num, row, row), dtype="float32")
x = 0
for i in range(len(mats)):
each_data = sio.loadmat(path + mats[i])
dataMat0 = each_data["data1"]
dataMat = dataMat0[:row, :totalCol]
# print(dataMat.shape())
# colInd = np.linspace(0, totalCol, samples, endpoint = False, dtype = "int")
for j in range(samples):
arr = np.asarray(dataMat[:, j *row : (j + 1)*row], dtype = "uint8")
data[x, :, :] = arr
x = x + 1
# data /= np.max(data)
return data
def load_train_data():
# folders = ["./HC/","./FES/","./CHR/"] # data1
folders = ["./CHR/","./FES/","./HC/"] # data
folders_num = len(folders)
dataSet = np.empty((), dtype="uint8")
label = np.empty((), dtype="uint8")
for i in range(folders_num):
data = load_data(folders[i])
each_label = np.empty((data.shape[0],1), dtype="uint8")
each_label.fill(i)
if i == 0:
dataSet, label = data, each_label
else:
# print(dataSet.shape)
dataSet = np.concatenate((dataSet, data))
label = np.concatenate((label, each_label))
# index = [ii for ii in range(len(dataSet))]
# random.shuffle(index)
# dataSet = dataSet[index]
# label = label[index]
return dataSet, label
def load_test_data0():
folders = ["./datatest-hc/"]
folders_num = len(folders)
dataSet = np.empty((), dtype="uint8")
for i in range(folders_num):
data = load_data(folders[i])
if i == 0:
dataSet = data
else:
dataSet = np.concatenate((dataSet, data))
return dataSet
def load_test_data():
folders = ["./datatest-hc/"] # data
folders_num = len(folders)
dataSet = np.empty((), dtype="uint8")
label = np.empty((), dtype="uint8")
for i in range(folders_num):
data = load_data(folders[i])
each_label = np.empty((data.shape[0],1), dtype="uint8")
each_label.fill(i)
if i == 0:
dataSet, label = data, each_label
else:
print(dataSet.shape)
dataSet = np.concatenate((dataSet, data))
label = np.concatenate((label, each_label))
index = [ii for ii in range(len(dataSet))]
random.shuffle(index)
dataSet = dataSet[index]
label = label[index]
return dataSet, label