-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathreconstruct.py
256 lines (209 loc) · 9.64 KB
/
reconstruct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import logging
import numpy as np
import os
import random
import statistics
import time
import torch
from argparse import ArgumentParser
from kornia import augmentation
import losses as L
import utils
from evaluation import get_knn_dist, calc_fid
from models.classifiers import VGG16, IR152, FaceNet, FaceNet64
from models.generators.resnet64 import ResNetGenerator
from utils import save_tensor_images
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
def set_random_seed(seed=0):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
set_random_seed(42)
# logger
def get_logger():
logger_name = "main-logger"
logger = logging.getLogger(logger_name)
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
fmt = "[%(asctime)s %(levelname)s %(filename)s line %(lineno)d %(process)d] %(message)s"
handler.setFormatter(logging.Formatter(fmt))
logger.addHandler(handler)
return logger
def inversion(args, G, T, E, iden, itr, lr=2e-2, iter_times=1500, num_seeds=5):
save_img_dir = os.path.join(args.save_dir, 'all_imgs')
success_dir = os.path.join(args.save_dir, 'success_imgs')
os.makedirs(save_img_dir, exist_ok=True)
os.makedirs(success_dir, exist_ok=True)
bs = iden.shape[0]
iden = iden.view(-1).long().cuda()
G.eval()
T.eval()
E.eval()
flag = torch.zeros(bs)
no = torch.zeros(bs) # index for saving all success attack images
res = []
res5 = []
seed_acc = torch.zeros((bs, 5))
aug_list = augmentation.container.ImageSequential(
augmentation.RandomResizedCrop((64, 64), scale=(0.8, 1.0), ratio=(1.0, 1.0)),
augmentation.ColorJitter(brightness=0.2, contrast=0.2),
augmentation.RandomHorizontalFlip(),
augmentation.RandomRotation(5),
)
for random_seed in range(num_seeds):
tf = time.time()
r_idx = random_seed
set_random_seed(random_seed)
z = utils.sample_z(
bs, args.gen_dim_z, device, args.gen_distribution
)
z.requires_grad = True
optimizer = torch.optim.Adam([z], lr=lr)
for i in range(iter_times):
fake = G(z, iden)
out1 = T(aug_list(fake))[-1]
out2 = T(aug_list(fake))[-1]
if z.grad is not None:
z.grad.data.zero_()
if args.inv_loss_type == 'ce':
inv_loss = L.cross_entropy_loss(out1, iden) + L.cross_entropy_loss(out2, iden)
elif args.inv_loss_type == 'margin':
inv_loss = L.max_margin_loss(out1, iden) + L.max_margin_loss(out2, iden)
elif args.inv_loss_type == 'poincare':
inv_loss = L.poincare_loss(out1, iden) + L.poincare_loss(out2, iden)
optimizer.zero_grad()
inv_loss.backward()
optimizer.step()
inv_loss_val = inv_loss.item()
if (i + 1) % 100 == 0:
with torch.no_grad():
fake_img = G(z, iden)
eval_prob = E(augmentation.Resize((112, 112))(fake_img))[-1]
eval_iden = torch.argmax(eval_prob, dim=1).view(-1)
acc = iden.eq(eval_iden.long()).sum().item() * 1.0 / bs
print("Iteration:{}\tInv Loss:{:.2f}\tAttack Acc:{:.2f}".format(i + 1, inv_loss_val, acc))
with torch.no_grad():
fake = G(z, iden)
score = T(fake)[-1]
eval_prob = E(augmentation.Resize((112, 112))(fake))[-1]
eval_iden = torch.argmax(eval_prob, dim=1).view(-1)
cnt, cnt5 = 0, 0
for i in range(bs):
gt = iden[i].item()
sample = G(z, iden)[i]
all_img_class_path = os.path.join(save_img_dir, str(gt))
if not os.path.exists(all_img_class_path):
os.makedirs(all_img_class_path)
save_tensor_images(sample.detach(),
os.path.join(all_img_class_path, "attack_iden_{}_{}.png".format(gt, r_idx)))
if eval_iden[i].item() == gt:
seed_acc[i, r_idx] = 1
cnt += 1
flag[i] = 1
best_img = G(z, iden)[i]
success_img_class_path = os.path.join(success_dir, str(gt))
if not os.path.exists(success_img_class_path):
os.makedirs(success_img_class_path)
save_tensor_images(best_img.detach(), os.path.join(success_img_class_path,
"{}_attack_iden_{}_{}.png".format(itr, gt,
int(no[i]))))
no[i] += 1
_, top5_idx = torch.topk(eval_prob[i], 5)
if gt in top5_idx:
cnt5 += 1
interval = time.time() - tf
print("Time:{:.2f}\tAcc:{:.2f}\t".format(interval, cnt * 1.0 / bs))
res.append(cnt * 1.0 / bs)
res5.append(cnt5 * 1.0 / bs)
torch.cuda.empty_cache()
acc, acc_5 = statistics.mean(res), statistics.mean(res5)
acc_var = statistics.variance(res)
acc_var5 = statistics.variance(res5)
print("Acc:{:.2f}\tAcc_5:{:.2f}\tAcc_var:{:.4f}\tAcc_var5:{:.4f}".format(acc, acc_5, acc_var, acc_var5))
return acc, acc_5, acc_var, acc_var5
if __name__ == "__main__":
global args, logger
parser = ArgumentParser(description='Stage-2: Image Reconstruction')
parser.add_argument('--model', default='VGG16', help='VGG16 | IR152 | FaceNet64')
parser.add_argument('--inv_loss_type', type=str, default='margin', help='ce | margin | poincare')
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--iter_times', type=int, default=600)
# Generator configuration
parser.add_argument('--gen_num_features', '-gnf', type=int, default=64,
help='Number of features of generator (a.k.a. nplanes or ngf). default: 64')
parser.add_argument('--gen_dim_z', '-gdz', type=int, default=128,
help='Dimension of generator input noise. default: 128')
parser.add_argument('--gen_bottom_width', '-gbw', type=int, default=4,
help='Initial size of hidden variable of generator. default: 4')
parser.add_argument('--gen_distribution', '-gd', type=str, default='normal',
help='Input noise distribution: normal (default) or uniform.')
# path
parser.add_argument('--save_dir', type=str,
default='PLG_MI_Inversion')
parser.add_argument('--path_G', type=str,
default='')
args = parser.parse_args()
logger = get_logger()
logger.info(args)
logger.info("=> creating model ...")
set_random_seed(42)
# load Generator
G = ResNetGenerator(
args.gen_num_features, args.gen_dim_z, args.gen_bottom_width,
num_classes=1000, distribution=args.gen_distribution
)
gen_ckpt_path = args.path_G
gen_ckpt = torch.load(gen_ckpt_path)['model']
G.load_state_dict(gen_ckpt)
G = G.cuda()
# Load target model
if args.model.startswith("VGG16"):
T = VGG16(1000)
path_T = 'checkpoints/target_model/VGG16_88.26.tar'
elif args.model.startswith('IR152'):
T = IR152(1000)
path_T = 'checkpoints/target_model/IR152_91.16.tar'
elif args.model == "FaceNet64":
T = FaceNet64(1000)
path_T = 'checkpoints/target_model/FaceNet64_88.50.tar'
T = torch.nn.DataParallel(T).cuda()
ckp_T = torch.load(path_T)
T.load_state_dict(ckp_T['state_dict'], strict=False)
# Load evaluation model
E = FaceNet(1000)
E = torch.nn.DataParallel(E).cuda()
path_E = 'checkpoints/evaluate_model/FaceNet_95.88.tar'
ckp_E = torch.load(path_E)
E.load_state_dict(ckp_E['state_dict'], strict=False)
logger.info("=> Begin attacking ...")
aver_acc, aver_acc5, aver_var, aver_var5 = 0, 0, 0, 0
for i in range(1):
# attack 60 classes per batch
iden = torch.from_numpy(np.arange(60))
# evaluate on the first 300 identities only
for idx in range(5):
print("--------------------- Attack batch [%s]------------------------------" % idx)
# reconstructed private images
acc, acc5, var, var5 = inversion(args, G, T, E, iden, itr=i, lr=args.lr, iter_times=args.iter_times,
num_seeds=5)
iden = iden + 60
aver_acc += acc / 5
aver_acc5 += acc5 / 5
aver_var += var / 5
aver_var5 += var5 / 5
print("Average Acc:{:.2f}\tAverage Acc5:{:.2f}\tAverage Acc_var:{:.4f}\tAverage Acc_var5:{:.4f}".format(aver_acc,
aver_acc5,
aver_var,
aver_var5))
print("=> Calculate the KNN Dist.")
knn_dist = get_knn_dist(E, os.path.join(args.save_dir, 'all_imgs'), "celeba_private_feats")
print("KNN Dist %.2f" % knn_dist)
print("=> Calculate the FID.")
fid = calc_fid(recovery_img_path=os.path.join(args.save_dir, "success_imgs"),
private_img_path="datasets/celeba_private_domain",
batch_size=100)
print("FID %.2f" % fid)