KNN基础学习详见--> https://github.com/LiuChuang0059/Machine_Learning/blob/master/Statical_Learning/Chapter_3-KNN/README.md
- 主要: 对未标记的对象进行标记
- 计算实例点与标记的对象之间的距离,确定其k近邻点
- 使用周边数量最多的类标签来确定该对象的标签
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset = pd.read_csv('Social_Network_Ads.csv')
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2)
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
visualisation-------详见--->Lpgistic_regression
plot_decision_regions(X_test, y_pred, classifier=cl)
plt.title("Test set")
-
尝试自实现knn分类算法
-
改变调整参数---效果
KNeighborsClassfier参数: http://sklearn.apachecn.org/cn/0.19.0/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier
KNeighborsClassfier使用 : http://sklearn.apachecn.org/cn/0.19.0/auto_examples/neighbors/plot_classification.html#sphx-glr-auto-examples-neighbors-plot-classification-py
KNN 算法python实现 : https://www.cnblogs.com/ybjourney/p/4702562.html