-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
186 lines (154 loc) · 6.48 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Copyright 2022 Dakewe Biotech Corporation. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import os
import shutil
from enum import Enum
from typing import Any, Dict, TypeVar
import torch
from torch import nn
__all__ = [
"accuracy", "load_state_dict", "make_directory", "ovewrite_named_param", "save_checkpoint",
"Summary", "AverageMeter", "ProgressMeter"
]
V = TypeVar("V")
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
results = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
results.append(correct_k.mul_(100.0 / batch_size))
return results
def load_state_dict(
model: nn.Module,
model_weights_path: str,
ema_model: nn.Module = None,
start_epoch: int = None,
best_acc1: float = None,
optimizer: torch.optim.Optimizer = None,
scheduler: torch.optim.lr_scheduler = None,
load_mode: str = None,
) -> [nn.Module, nn.Module, str, int, float, torch.optim.Optimizer, torch.optim.lr_scheduler]:
# Load model weights
checkpoint = torch.load(model_weights_path, map_location=lambda storage, loc: storage)
if load_mode == "resume":
# Restore the parameters in the training node to this point
start_epoch = checkpoint["epoch"]
best_acc1 = checkpoint["best_acc1"]
# Load model state dict. Extract the fitted model weights
model_state_dict = model.state_dict()
state_dict = {k: v for k, v in checkpoint["state_dict"].items() if k in model_state_dict.keys()}
# Overwrite the model weights to the current model (base model)
model_state_dict.update(state_dict)
model.load_state_dict(model_state_dict)
# Load ema model state dict. Extract the fitted model weights
ema_model_state_dict = ema_model.state_dict()
ema_state_dict = {k: v for k, v in checkpoint["ema_state_dict"].items() if k in ema_model_state_dict.keys()}
# Overwrite the model weights to the current model (ema model)
ema_model_state_dict.update(ema_state_dict)
ema_model.load_state_dict(ema_model_state_dict)
# Load the optimizer model
optimizer.load_state_dict(checkpoint["optimizer"])
# Load the scheduler model
scheduler.load_state_dict(checkpoint["scheduler"])
else:
# Load model state dict. Extract the fitted model weights
model_state_dict = model.state_dict()
state_dict = {k: v for k, v in checkpoint["state_dict"].items() if
k in model_state_dict.keys() and v.size() == model_state_dict[k].size()}
# Overwrite the model weights to the current model
model_state_dict.update(state_dict)
model.load_state_dict(model_state_dict)
return model, ema_model, start_epoch, best_acc1, optimizer, scheduler
def make_directory(dir_path: str) -> None:
if not os.path.exists(dir_path):
os.makedirs(dir_path)
def ovewrite_named_param(kwargs: Dict[str, Any], param: str, new_value: V) -> None:
if param in kwargs:
if kwargs[param] != new_value:
raise ValueError(f"The parameter '{param}' expected value {new_value} but got {kwargs[param]} instead.")
else:
kwargs[param] = new_value
def save_checkpoint(
state_dict: dict,
file_name: str,
samples_dir: str,
results_dir: str,
is_best: bool = False,
is_last: bool = False,
) -> None:
checkpoint_path = os.path.join(samples_dir, file_name)
torch.save(state_dict, checkpoint_path)
if is_best:
shutil.copyfile(checkpoint_path, os.path.join(results_dir, "best.pth.tar"))
if is_last:
shutil.copyfile(checkpoint_path, os.path.join(results_dir, "last.pth.tar"))
class Summary(Enum):
NONE = 0
AVERAGE = 1
SUM = 2
COUNT = 3
class AverageMeter(object):
def __init__(self, name, fmt=":f", summary_type=Summary.AVERAGE):
self.name = name
self.fmt = fmt
self.summary_type = summary_type
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
return fmtstr.format(**self.__dict__)
def summary(self):
if self.summary_type is Summary.NONE:
fmtstr = ""
elif self.summary_type is Summary.AVERAGE:
fmtstr = "{name} {avg:.2f}"
elif self.summary_type is Summary.SUM:
fmtstr = "{name} {sum:.2f}"
elif self.summary_type is Summary.COUNT:
fmtstr = "{name} {count:.2f}"
else:
raise ValueError(f"Invalid summary type {self.summary_type}")
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print("\t".join(entries))
def display_summary(self):
entries = [" *"]
entries += [meter.summary() for meter in self.meters]
print(" ".join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = "{:" + str(num_digits) + "d}"
return "[" + fmt + "/" + fmt.format(num_batches) + "]"