-
Notifications
You must be signed in to change notification settings - Fork 53
/
pql.py
349 lines (293 loc) · 13.2 KB
/
pql.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
"""Pareto Q-Learning."""
import numbers
from typing import Callable, List, Optional
import gymnasium as gym
import numpy as np
import wandb
from morl_baselines.common.evaluation import log_all_multi_policy_metrics
from morl_baselines.common.morl_algorithm import MOAgent
from morl_baselines.common.pareto import get_non_dominated
from morl_baselines.common.performance_indicators import hypervolume
from morl_baselines.common.utils import linearly_decaying_value
class PQL(MOAgent):
"""Pareto Q-learning.
Tabular method relying on pareto pruning.
Paper: K. Van Moffaert and A. Nowé, “Multi-objective reinforcement learning using sets of pareto dominating policies,” The Journal of Machine Learning Research, vol. 15, no. 1, pp. 3483–3512, 2014.
"""
def __init__(
self,
env,
ref_point: np.ndarray,
gamma: float = 0.8,
initial_epsilon: float = 1.0,
epsilon_decay_steps: int = 100000,
final_epsilon: float = 0.1,
seed: Optional[int] = None,
project_name: str = "MORL-Baselines",
experiment_name: str = "Pareto Q-Learning",
wandb_entity: Optional[str] = None,
log: bool = True,
):
"""Initialize the Pareto Q-learning algorithm.
Args:
env: The environment.
ref_point: The reference point for the hypervolume metric.
gamma: The discount factor.
initial_epsilon: The initial epsilon value.
epsilon_decay_steps: The number of steps to decay epsilon.
final_epsilon: The final epsilon value.
seed: The random seed.
project_name: The name of the project used for logging.
experiment_name: The name of the experiment used for logging.
wandb_entity: The wandb entity used for logging.
log: Whether to log or not.
"""
super().__init__(env, seed=seed)
# Learning parameters
self.gamma = gamma
self.epsilon = initial_epsilon
self.initial_epsilon = initial_epsilon
self.epsilon_decay_steps = epsilon_decay_steps
self.final_epsilon = final_epsilon
# Algorithm setup
self.ref_point = ref_point
if isinstance(self.env.action_space, gym.spaces.Discrete):
self.num_actions = self.env.action_space.n
elif isinstance(self.env.action_space, gym.spaces.MultiDiscrete):
self.num_actions = np.prod(self.env.action_space.nvec)
else:
raise Exception("PQL only supports (multi)discrete action spaces.")
if isinstance(self.env.observation_space, gym.spaces.Discrete):
self.env_shape = (self.env.observation_space.n,)
elif isinstance(self.env.observation_space, gym.spaces.MultiDiscrete):
self.env_shape = self.env.observation_space.nvec
elif (
isinstance(self.env.observation_space, gym.spaces.Box)
and self.env.observation_space.is_bounded(manner="both")
and issubclass(self.env.observation_space.dtype.type, numbers.Integral)
):
low_bound = np.array(self.env.observation_space.low)
high_bound = np.array(self.env.observation_space.high)
self.env_shape = high_bound - low_bound + 1
else:
raise Exception("PQL only supports discretizable observation spaces.")
self.num_states = np.prod(self.env_shape)
self.num_objectives = self.env.unwrapped.reward_space.shape[0]
self.counts = np.zeros((self.num_states, self.num_actions))
self.non_dominated = [
[{tuple(np.zeros(self.num_objectives))} for _ in range(self.num_actions)] for _ in range(self.num_states)
]
self.avg_reward = np.zeros((self.num_states, self.num_actions, self.num_objectives))
# Logging
self.project_name = project_name
self.experiment_name = experiment_name
self.log = log
if self.log:
self.setup_wandb(
project_name=self.project_name,
experiment_name=self.experiment_name,
entity=wandb_entity,
)
def get_config(self) -> dict:
"""Get the configuration dictionary.
Returns:
Dict: A dictionary of parameters and values.
"""
return {
"env_id": self.env.unwrapped.spec.id,
"ref_point": list(self.ref_point),
"gamma": self.gamma,
"initial_epsilon": self.initial_epsilon,
"epsilon_decay_steps": self.epsilon_decay_steps,
"final_epsilon": self.final_epsilon,
"seed": self.seed,
}
def score_pareto_cardinality(self, state: int):
"""Compute the action scores based upon the Pareto cardinality metric.
Args:
state (int): The current state.
Returns:
ndarray: A score per action.
"""
q_sets = [self.get_q_set(state, action) for action in range(self.num_actions)]
candidates = set().union(*q_sets)
non_dominated = get_non_dominated(candidates)
scores = np.zeros(self.num_actions)
for vec in non_dominated:
for action, q_set in enumerate(q_sets):
if vec in q_set:
scores[action] += 1
return scores
def score_hypervolume(self, state: int):
"""Compute the action scores based upon the hypervolume metric.
Args:
state (int): The current state.
Returns:
ndarray: A score per action.
"""
q_sets = [self.get_q_set(state, action) for action in range(self.num_actions)]
action_scores = [hypervolume(self.ref_point, list(q_set)) for q_set in q_sets]
return action_scores
def get_q_set(self, state: int, action: int):
"""Compute the Q-set for a given state-action pair.
Args:
state (int): The current state.
action (int): The action.
Returns:
A set of Q vectors.
"""
nd_array = np.array(list(self.non_dominated[state][action]))
q_array = self.avg_reward[state, action] + self.gamma * nd_array
return {tuple(vec) for vec in q_array}
def select_action(self, state: int, score_func: Callable):
"""Select an action in the current state.
Args:
state (int): The current state.
score_func (callable): A function that returns a score per action.
Returns:
int: The selected action.
"""
if self.np_random.uniform(0, 1) < self.epsilon:
return self.np_random.integers(self.num_actions)
else:
action_scores = score_func(state)
return self.np_random.choice(np.argwhere(action_scores == np.max(action_scores)).flatten())
def calc_non_dominated(self, state: int):
"""Get the non-dominated vectors in a given state.
Args:
state (int): The current state.
Returns:
Set: A set of Pareto non-dominated vectors.
"""
candidates = set().union(*[self.get_q_set(state, action) for action in range(self.num_actions)])
non_dominated = get_non_dominated(candidates)
return non_dominated
def train(
self,
total_timesteps: int,
eval_env: gym.Env,
ref_point: Optional[np.ndarray] = None,
known_pareto_front: Optional[List[np.ndarray]] = None,
num_eval_weights_for_eval: int = 50,
log_every: Optional[int] = 10000,
action_eval: Optional[str] = "hypervolume",
):
"""Learn the Pareto front.
Args:
total_timesteps (int, optional): The number of episodes to train for.
eval_env (gym.Env): The environment to evaluate the policies on.
eval_ref_point (ndarray, optional): The reference point for the hypervolume metric during evaluation. If none, use the same ref point as training.
known_pareto_front (List[ndarray], optional): The optimal Pareto front, if known.
num_eval_weights_for_eval (int): Number of weights use when evaluating the Pareto front, e.g., for computing expected utility.
log_every (int, optional): Log the results every number of timesteps. (Default value = 1000)
action_eval (str, optional): The action evaluation function name. (Default value = 'hypervolume')
Returns:
Set: The final Pareto front.
"""
if action_eval == "hypervolume":
score_func = self.score_hypervolume
elif action_eval == "pareto_cardinality":
score_func = self.score_pareto_cardinality
else:
raise Exception("No other method implemented yet")
if ref_point is None:
ref_point = self.ref_point
if self.log:
self.register_additional_config(
{
"total_timesteps": total_timesteps,
"ref_point": ref_point.tolist(),
"known_front": known_pareto_front,
"num_eval_weights_for_eval": num_eval_weights_for_eval,
"log_every": log_every,
"action_eval": action_eval,
}
)
while self.global_step < total_timesteps:
state, _ = self.env.reset()
state = int(np.ravel_multi_index(state, self.env_shape))
terminated = False
truncated = False
while not (terminated or truncated) and self.global_step < total_timesteps:
action = self.select_action(state, score_func)
next_state, reward, terminated, truncated, _ = self.env.step(action)
self.global_step += 1
next_state = int(np.ravel_multi_index(next_state, self.env_shape))
self.counts[state, action] += 1
self.non_dominated[state][action] = self.calc_non_dominated(next_state)
self.avg_reward[state, action] += (reward - self.avg_reward[state, action]) / self.counts[state, action]
state = next_state
if self.log and self.global_step % log_every == 0:
wandb.log({"global_step": self.global_step})
pf = self._eval_all_policies(eval_env)
log_all_multi_policy_metrics(
current_front=pf,
hv_ref_point=ref_point,
reward_dim=self.reward_dim,
global_step=self.global_step,
n_sample_weights=num_eval_weights_for_eval,
ref_front=known_pareto_front,
)
self.epsilon = linearly_decaying_value(
self.initial_epsilon,
self.epsilon_decay_steps,
self.global_step,
0,
self.final_epsilon,
)
return self.get_local_pcs(state=0)
def _eval_all_policies(self, env: gym.Env) -> List[np.ndarray]:
"""Evaluate all learned policies by tracking them."""
pf = []
for vec in self.get_local_pcs(state=0):
pf.append(self.track_policy(vec, env))
return pf
def track_policy(self, vec, env: gym.Env, tol=1e-3):
"""Track a policy from its return vector.
Args:
vec (array_like): The return vector to track.
env (gym.Env): The environment to track the policy in.
tol (float, optional): The tolerance for the return vector. (Default value = 1e-3)
"""
target = np.array(vec)
state, _ = env.reset()
terminated = False
truncated = False
total_rew = np.zeros(self.num_objectives)
current_gamma = 1.0
while not (terminated or truncated):
state = np.ravel_multi_index(state, self.env_shape)
closest_dist = np.inf
closest_action = 0
found_action = False
new_target = target
for action in range(self.num_actions):
im_rew = self.avg_reward[state, action]
non_dominated_set = self.non_dominated[state][action]
for q in non_dominated_set:
q = np.array(q)
dist = np.sum(np.abs(self.gamma * q + im_rew - target))
if dist < closest_dist:
closest_dist = dist
closest_action = action
new_target = q
if dist < tol:
found_action = True
break
if found_action:
break
state, reward, terminated, truncated, _ = env.step(closest_action)
total_rew += current_gamma * reward
current_gamma *= self.gamma
target = new_target
return total_rew
def get_local_pcs(self, state: int = 0):
"""Collect the local PCS in a given state.
Args:
state (int): The state to get a local PCS for. (Default value = 0)
Returns:
Set: A set of Pareto optimal vectors.
"""
q_sets = [self.get_q_set(state, action) for action in range(self.num_actions)]
candidates = set().union(*q_sets)
return get_non_dominated(candidates)