-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathparse.py
133 lines (120 loc) · 5.14 KB
/
parse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import datetime
import itertools
import os
from pathlib import Path
from stanfordnlp.server import CoreNLPClient
import global_options
from culture import file_util, preprocess
def process_line(line, lineID):
"""Process each line and return a tuple of sentences, sentence_IDs,
Arguments:
line {str} -- a document
lineID {str} -- the document ID
Returns:
str, str -- processed document with each sentence in a line,
sentence IDs with each in its own line: lineID_0 lineID_1 ...
"""
try:
sentences_processed, doc_sent_ids = corpus_preprocessor.process_document(
line, lineID
)
except Exception as e:
print(e)
print("Exception in line: {}".format(lineID))
return "\n".join(sentences_processed), "\n".join(doc_sent_ids)
def process_largefile(
input_file,
output_file,
input_file_ids,
output_index_file,
function_name,
chunk_size=100,
start_index=None,
):
""" A helper function that transforms an input file + a list of IDs of each line (documents + document_IDs) to two output files (processed documents + processed document IDs) by calling function_name on chunks of the input files. Each document can be decomposed into multiple processed documents (e.g. sentences).
Supports parallel with Pool.
Arguments:
input_file {str or Path} -- path to a text file, each line is a document
ouput_file {str or Path} -- processed linesentence file (remove if exists)
input_file_ids {str]} -- a list of input line ids
output_index_file {str or Path} -- path to the index file of the output
function_name {callable} -- A function that processes a list of strings, list of ids and return a list of processed strings and ids.
chunk_size {int} -- number of lines to process each time, increasing the default may increase performance
start_index {int} -- line number to start from (index starts with 0)
Writes:
Write the ouput_file and output_index_file
"""
try:
if start_index is None:
# if start from the first line, remove existing output file
# else append to existing output file
os.remove(str(output_file))
os.remove(str(output_index_file))
except OSError:
pass
assert file_util.line_counter(input_file) == len(
input_file_ids
), "Make sure the input file has the same number of rows as the input ID file. "
with open(input_file, newline="\n", encoding="utf-8", errors="ignore") as f_in:
line_i = 0
# jump to index
if start_index is not None:
# start at start_index line
for _ in range(start_index):
next(f_in)
input_file_ids = input_file_ids[start_index:]
line_i = start_index
for next_n_lines, next_n_line_ids in zip(
itertools.zip_longest(*[f_in] * chunk_size),
itertools.zip_longest(*[iter(input_file_ids)] * chunk_size),
):
line_i += chunk_size
print(datetime.datetime.now())
print(f"Processing line: {line_i}.")
next_n_lines = list(filter(None.__ne__, next_n_lines))
next_n_line_ids = list(filter(None.__ne__, next_n_line_ids))
output_lines = []
output_line_ids = []
# Use parse_parallel.py to speed things up
for output_line, output_line_id in map(
function_name, next_n_lines, next_n_line_ids
):
output_lines.append(output_line)
output_line_ids.append(output_line_id)
output_lines = "\n".join(output_lines) + "\n"
output_line_ids = "\n".join(output_line_ids) + "\n"
with open(output_file, "a", newline="\n") as f_out:
f_out.write(output_lines)
if output_index_file is not None:
with open(output_index_file, "a", newline="\n") as f_out:
f_out.write(output_line_ids)
if __name__ == "__main__":
with CoreNLPClient(
properties={
"ner.applyFineGrained": "false",
"annotators": "tokenize, ssplit, pos, lemma, ner, depparse",
},
memory=global_options.RAM_CORENLP,
threads=global_options.N_CORES,
timeout=12000000,
max_char_length=1000000,
) as client:
corpus_preprocessor = preprocess.preprocessor(client)
in_file = Path(global_options.DATA_FOLDER, "input", "documents.txt")
in_file_index = file_util.file_to_list(
Path(global_options.DATA_FOLDER, "input", "document_ids.txt")
)
out_file = Path(
global_options.DATA_FOLDER, "processed", "parsed", "documents.txt"
)
output_index_file = Path(
global_options.DATA_FOLDER, "processed", "parsed", "document_sent_ids.txt"
)
process_largefile(
input_file=in_file,
output_file=out_file,
input_file_ids=in_file_index,
output_index_file=output_index_file,
function_name=process_line,
chunk_size=global_options.PARSE_CHUNK_SIZE,
)