-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathscore.py
206 lines (183 loc) · 6.79 KB
/
score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import itertools
import os
import pickle
from collections import defaultdict
from operator import itemgetter
from pathlib import Path
import pandas as pd
from tqdm import tqdm as tqdm
import global_options
from culture import culture_dictionary, file_util
# @TODO: The scoring functions are not memory friendly. The entire pocessed corpus needs to fit in the RAM. Rewrite a memory friendly version.
def construct_doc_level_corpus(sent_corpus_file, sent_id_file):
"""Construct document level corpus from sentence level corpus and write to disk.
Dump "corpus_doc_level.pickle" and "doc_ids.pickle" to Path(global_options.OUTPUT_FOLDER, "scores", "temp").
Arguments:
sent_corpus_file {str or Path} -- The sentence corpus after parsing and cleaning, each line is a sentence
sent_id_file {str or Path} -- The sentence ID file, each line correspond to a line in the sent_co(docID_sentenceID)
Returns:
[str], [str], int -- a tuple of a list of documents, a list of document IDs, and the number of documents
"""
print("Constructing doc level corpus")
# sentence level corpus
sent_corpus = file_util.file_to_list(sent_corpus_file)
sent_IDs = file_util.file_to_list(sent_id_file)
assert len(sent_IDs) == len(sent_corpus)
# doc id for each sentence
doc_ids = [x.split("_")[0] for x in sent_IDs]
# concat all text from the same doc
id_doc_dict = defaultdict(lambda: "")
for i, id in enumerate(doc_ids):
id_doc_dict[id] += " " + sent_corpus[i]
# create doc level corpus
corpus = list(id_doc_dict.values())
doc_ids = list(id_doc_dict.keys())
assert len(corpus) == len(doc_ids)
with open(
Path(global_options.OUTPUT_FOLDER, "scores", "temp", "corpus_doc_level.pickle"),
"wb",
) as out_f:
pickle.dump(corpus, out_f)
with open(
Path(global_options.OUTPUT_FOLDER, "scores", "temp", "doc_ids.pickle"), "wb"
) as out_f:
pickle.dump(doc_ids, out_f)
N_doc = len(corpus)
return corpus, doc_ids, N_doc
def calculate_df(corpus):
"""Calcualte and dump a document-freq dict for all the words.
Arguments:
corpus {[str]} -- a list of documents
Returns:
{dict[str: int]} -- document freq for each word
"""
print("Calculating document frequencies.")
# document frequency
df_dict = defaultdict(int)
for doc in tqdm(corpus):
doc_splited = doc.split()
words_in_doc = set(doc_splited)
for word in words_in_doc:
df_dict[word] += 1
# save df dict
with open(
Path(global_options.OUTPUT_FOLDER, "scores", "temp", "doc_freq.pickle"), "wb"
) as f:
pickle.dump(df_dict, f)
return df_dict
def load_doc_level_corpus():
"""load the corpus constructed by construct_doc_level_corpus()
Returns:
[str], [str], int -- a tuple of a list of documents, a list of document IDs, and the number of documents
"""
print("Loading document level corpus.")
with open(
Path(global_options.OUTPUT_FOLDER, "scores", "temp", "corpus_doc_level.pickle"),
"rb",
) as in_f:
corpus = pickle.load(in_f)
with open(
Path(global_options.OUTPUT_FOLDER, "scores", "temp", "doc_ids.pickle"), "rb"
) as in_f:
doc_ids = pickle.load(in_f)
assert len(corpus) == len(doc_ids)
N_doc = len(corpus)
return corpus, doc_ids, N_doc
def score_tf(documents, doc_ids, expanded_dict):
"""
Score documents using term freq.
"""
print("Scoring using Term-freq (tf).")
score = culture_dictionary.score_tf(
documents=documents,
document_ids=doc_ids,
expanded_words=expanded_dict,
n_core=global_options.N_CORES,
)
score.to_csv(
Path(global_options.OUTPUT_FOLDER, "scores", "scores_TF.csv"), index=False
)
def score_tf_idf(documents, doc_ids, N_doc, method, expanded_dict, **kwargs):
"""Score documents using tf-idf and its variations
Arguments:
documents {[str]} -- list of documents
doc_ids {[str]} -- list of document IDs
N_doc {int} -- number of documents
method {str} --
TFIDF: conventional tf-idf
WFIDF: use wf-idf log(1+count) instead of tf in the numerator
TFIDF/WFIDF+SIMWEIGHT: using additional word weights given by the word_weights dict
expanded_dict {dict[str, set(str)]} -- expanded dictionary
"""
if method == "TF":
print("Scoring TF.")
score_tf(documents, doc_ids, expanded_dict)
else:
print("Scoring TF-IDF.")
# load document freq
df_dict = pd.read_pickle(
Path(global_options.OUTPUT_FOLDER, "scores", "temp", "doc_freq.pickle")
)
# score tf-idf
score, contribution = culture_dictionary.score_tf_idf(
documents=documents,
document_ids=doc_ids,
expanded_words=expanded_dict,
df_dict=df_dict,
N_doc=N_doc,
method=method,
**kwargs
)
# save the document level scores (without dividing by doc length)
score.to_csv(
str(
Path(
global_options.OUTPUT_FOLDER,
"scores",
"scores_{}.csv".format(method),
)
),
index=False,
)
# save word contributions
pd.DataFrame.from_dict(contribution, orient="index").to_csv(
Path(
global_options.OUTPUT_FOLDER,
"scores",
"word_contributions",
"word_contribution_{}.csv".format(method),
)
)
if __name__ == "__main__":
current_dict_path = str(
str(Path(global_options.OUTPUT_FOLDER, "dict", "expanded_dict.csv"))
)
culture_dict, all_dict_words = culture_dictionary.read_dict_from_csv(
current_dict_path
)
# words weighted by similarity rank (optional)
word_sim_weights = culture_dictionary.compute_word_sim_weights(current_dict_path)
## Pre-score ===========================
# aggregate processed sentences to documents
corpus, doc_ids, N_doc = construct_doc_level_corpus(
sent_corpus_file=Path(
global_options.DATA_FOLDER, "processed", "trigram", "documents.txt"
),
sent_id_file=Path(
global_options.DATA_FOLDER, "processed", "parsed", "document_sent_ids.txt"
),
)
word_doc_freq = calculate_df(corpus)
## Score ========================
# create document scores
methods = ["TF", "TFIDF", "WFIDF"]
for method in methods:
score_tf_idf(
corpus,
doc_ids,
N_doc,
method=method,
expanded_dict=culture_dict,
normalize=False,
word_weights=word_sim_weights,
)