-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgroebner-walk
43 lines (29 loc) · 1.53 KB
/
groebner-walk
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
-*- M2 -*-
Title: Generic Groebner walk
Description:
An M2 implementation of the generic Groebner Walk algorithm of
Fukuda-Jensen-Lauritzen-Thomas. This will probably not require to implement
anything new in M2 for convexity computations and this would be independent of
gfan.
http://front.math.ucdavis.edu/math.AC/0501345
math.AC/0501345
Title: The generic Groebner walk
Authors: K. Fukuda, A. N. Jensen, N. Lauritzen, R. Thomas
Faugère, J. C.(F-PARIS6-C); Gianni, P.(I-PISA); Lazard, D.(F-PARIS6-C); Mora, T.(I-GENO)
Efficient computation of zero-dimensional Gröbner bases by change of ordering.
J. Symbolic Comput. 16 (1993), no. 4, 329--344.
Amrhein, B.; Gloor, O. (1998): The Fractal Walk. In: B.~Buchberger and
F. Winkler (eds.): Groebner Bases and Applications, 305-322, LNS 251, CUP,
Cambridge.
Tran, Q.-N. (2000): A Fast Algorithm for Groebner Basis Conversion and its
Applications. J. Symb. Comput. 30, 451-467.
Perhaps (?) implement also the FGLM (Faugere-Gianni-Lazard-Mora) algorithm/walk
for the zero-dimensional case.
-- Mike: the FGLM should be implemented as part of the M2 engine, in C++.
=============================================================================
Proposed by: Sorin Popescu <sorin@math.sunysb.edu>
Potential Advisor:
Project assigned to: Mike Stillman, March, 2009; he's interested in having help
Current status: there is some preliminary code that runs, in the repository
=============================================================================
Progress log: