forked from lehaifeng/T-GCN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaselines.py
157 lines (144 loc) · 5.16 KB
/
baselines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error,mean_absolute_error
import numpy.linalg as la
import math
from sklearn.svm import SVR
from statsmodels.tsa.arima_model import ARIMA
def preprocess_data(data, time_len, rate, seq_len, pre_len):
data1 = np.mat(data)
train_size = int(time_len * rate)
train_data = data1[0:train_size]
test_data = data1[train_size:time_len]
trainX, trainY, testX, testY = [], [], [], []
for i in range(len(train_data) - seq_len - pre_len):
a = train_data[i: i + seq_len + pre_len]
trainX.append(a[0 : seq_len])
trainY.append(a[seq_len : seq_len + pre_len])
for i in range(len(test_data) - seq_len -pre_len):
b = test_data[i: i + seq_len + pre_len]
testX.append(b[0 : seq_len])
testY.append(b[seq_len : seq_len + pre_len])
return trainX, trainY, testX, testY
###### evaluation ######
def evaluation(a,b):
rmse = math.sqrt(mean_squared_error(a,b))
mae = mean_absolute_error(a, b)
F_norm = la.norm(a-b)/la.norm(a)
r2 = 1-((a-b)**2).sum()/((a-a.mean())**2).sum()
var = 1-(np.var(a - b))/np.var(a)
return rmse, mae, 1-F_norm, r2, var
path = r'data/los_speed.csv'
data = pd.read_csv(path)
time_len = data.shape[0]
num_nodes = data.shape[1]
train_rate = 0.8
seq_len = 12
pre_len = 3
trainX,trainY,testX,testY = preprocess_data(data, time_len, train_rate, seq_len, pre_len)
method = 'HA' ####HA or SVR or ARIMA
########### HA #############
if method == 'HA':
result = []
for i in range(len(testX)):
a = testX[i]
a1 = np.mean(a, axis=0)
result.append(a1)
result1 = np.array(result)
result1 = np.reshape(result1, [-1,num_nodes])
testY1 = np.array(testY)
testY1 = np.reshape(testY1, [-1,num_nodes])
rmse, mae, accuracy,r2,var = evaluation(testY1, result1)
print('HA_rmse:%r'%rmse,
'HA_mae:%r'%mae,
'HA_acc:%r'%accuracy,
'HA_r2:%r'%r2,
'HA_var:%r'%var)
############ SVR #############
if method == 'SVR':
total_rmse, total_mae, total_acc, result = [], [],[],[]
for i in range(num_nodes):
data1 = np.mat(data)
a = data1[:,i]
a_X, a_Y, t_X, t_Y = preprocess_data(a, time_len, train_rate, seq_len, pre_len)
a_X = np.array(a_X)
a_X = np.reshape(a_X,[-1, seq_len])
a_Y = np.array(a_Y)
a_Y = np.reshape(a_Y,[-1, pre_len])
a_Y = np.mean(a_Y, axis=1)
t_X = np.array(t_X)
t_X = np.reshape(t_X,[-1, seq_len])
t_Y = np.array(t_Y)
t_Y = np.reshape(t_Y,[-1, pre_len])
svr_model=SVR(kernel='linear')
svr_model.fit(a_X, a_Y)
pre = svr_model.predict(t_X)
pre = np.array(np.transpose(np.mat(pre)))
pre = pre.repeat(pre_len ,axis=1)
result.append(pre)
result1 = np.array(result)
result1 = np.reshape(result1, [num_nodes,-1])
result1 = np.transpose(result1)
testY1 = np.array(testY)
testY1 = np.reshape(testY1, [-1,num_nodes])
total = np.mat(total_acc)
total[total<0] = 0
rmse1, mae1, acc1,r2,var = evaluation(testY1, result1)
print('SVR_rmse:%r'%rmse1,
'SVR_mae:%r'%mae1,
'SVR_acc:%r'%acc1,
'SVR_r2:%r'%r2,
'SVR_var:%r'%var)
######## ARIMA #########
if method == 'ARIMA':
rng = pd.date_range('1/3/2012', periods=5664, freq='15min')
a1 = pd.DatetimeIndex(rng)
data.index = a1
num = data.shape[1]
rmse,mae,acc,r2,var,pred,ori = [],[],[],[],[],[],[]
for i in range(156):
ts = data.iloc[:,i]
ts_log=np.log(ts)
ts_log=np.array(ts_log,dtype=np.float)
where_are_inf = np.isinf(ts_log)
ts_log[where_are_inf] = 0
ts_log = pd.Series(ts_log)
ts_log.index = a1
model = ARIMA(ts_log,order=[1,0,0])
properModel = model.fit()
predict_ts = properModel.predict(4, dynamic=True)
log_recover = np.exp(predict_ts)
ts = ts[log_recover.index]
er_rmse,er_mae,er_acc,r2_score,var_score = evaluation(ts,log_recover)
rmse.append(er_rmse)
mae.append(er_mae)
acc.append(er_acc)
r2.append(r2_score)
var.append(var_score)
# for i in range(109,num):
# ts = data.iloc[:,i]
# ts_log=np.log(ts)
# ts_log=np.array(ts_log,dtype=np.float)
# where_are_inf = np.isinf(ts_log)
# ts_log[where_are_inf] = 0
# ts_log = pd.Series(ts_log)
# ts_log.index = a1
# model = ARIMA(ts_log,order=[1,1,1])
# properModel = model.fit(disp=-1, method='css')
# predict_ts = properModel.predict(2, dynamic=True)
# log_recover = np.exp(predict_ts)
# ts = ts[log_recover.index]
# er_rmse,er_mae,er_acc,r2_score,var_score = evaluation(ts,log_recover)
# rmse.append(er_rmse)
# mae.append(er_mae)
# acc.append(er_acc)
# r2.append(r2_score)
# var.append(var_score)
acc1 = np.mat(acc)
acc1[acc1 < 0] = 0
print('arima_rmse:%r'%(np.mean(rmse)),
'arima_mae:%r'%(np.mean(mae)),
'arima_acc:%r'%(np.mean(acc1)),
'arima_r2:%r'%(np.mean(r2)),
'arima_var:%r'%(np.mean(var)))