-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_iql.py
173 lines (146 loc) · 6.3 KB
/
main_iql.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import numpy as np
import torch
import gym
import argparse
import os
import d4rl
from tqdm import trange
from coolname import generate_slug
import time
import json
from log import Logger
import utils
from utils import VideoRecorder
import IQL
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Runs policy for X episodes and returns average reward
# A fixed seed is used for the eval environment
def eval_policy(args, iter, video: VideoRecorder, logger: Logger, policy, env_name, seed, mean, std, seed_offset=100, eval_episodes=10):
eval_env = gym.make(env_name)
eval_env.seed(seed + seed_offset)
lengths = []
returns = []
avg_reward = 0.
for _ in range(eval_episodes):
video.init(enabled=(args.save_video and _ == 0))
state, done = eval_env.reset(), False
video.record(eval_env)
steps = 0
episode_return = 0
while not done:
state = (np.array(state).reshape(1, -1) - mean)/std
action = policy.select_action(state)
state, reward, done, _ = eval_env.step(action)
video.record(eval_env)
avg_reward += reward
episode_return += reward
steps += 1
lengths.append(steps)
returns.append(episode_return)
video.save(f'eval_s{iter}_r{str(episode_return)}.mp4')
avg_reward /= eval_episodes
d4rl_score = eval_env.get_normalized_score(avg_reward)
logger.log('eval/lengths_mean', np.mean(lengths), iter)
logger.log('eval/lengths_std', np.std(lengths), iter)
logger.log('eval/returns_mean', np.mean(returns), iter)
logger.log('eval/returns_std', np.std(returns), iter)
logger.log('eval/d4rl_score', d4rl_score, iter)
print("---------------------------------------")
print(f"Evaluation over {eval_episodes} episodes: {d4rl_score:.3f}")
print("---------------------------------------")
return d4rl_score
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Experiment
parser.add_argument("--policy", default="IQL") # Policy name
parser.add_argument("--env", default="halfcheetah-medium-v2") # OpenAI gym environment name
parser.add_argument("--seed", default=0, type=int) # Sets Gym, PyTorch and Numpy seeds
parser.add_argument("--eval_freq", default=1e4, type=int) # How often (time steps) we evaluate
parser.add_argument("--max_timesteps", default=1e6, type=int) # Max time steps to run environment
parser.add_argument("--save_model", action="store_true", default=False) # Save model and optimizer parameters
parser.add_argument('--eval_episodes', default=10, type=int)
parser.add_argument('--save_video', default=False, action='store_true')
parser.add_argument("--normalize", default=False, action='store_true')
# IQL
parser.add_argument("--batch_size", default=256, type=int) # Batch size for both actor and critic
parser.add_argument("--temperature", default=3.0, type=float)
parser.add_argument("--expectile", default=0.7, type=float)
parser.add_argument("--tau", default=0.005, type=float)
parser.add_argument("--discount", default=0.99, type=float) # Discount factor
# Work dir
parser.add_argument('--work_dir', default='tmp', type=str)
args = parser.parse_args()
args.cooldir = generate_slug(2)
# Build work dir
base_dir = 'runs'
utils.make_dir(base_dir)
base_dir = os.path.join(base_dir, args.work_dir)
utils.make_dir(base_dir)
args.work_dir = os.path.join(base_dir, args.env)
utils.make_dir(args.work_dir)
# make directory
ts = time.gmtime()
ts = time.strftime("%m-%d-%H-%M", ts)
exp_name = str(args.env) + '-' + ts + '-bs' + str(args.batch_size) + '-s' + str(args.seed)
if args.policy == 'IQL':
exp_name += '-t' + str(args.temperature) + '-e' + str(args.expectile)
else:
raise NotImplementedError
exp_name += '-' + args.cooldir
args.work_dir = args.work_dir + '/' + exp_name
utils.make_dir(args.work_dir)
args.model_dir = os.path.join(args.work_dir, 'model')
utils.make_dir(args.model_dir)
args.video_dir = os.path.join(args.work_dir, 'video')
utils.make_dir(args.video_dir)
with open(os.path.join(args.work_dir, 'args.json'), 'w') as f:
json.dump(vars(args), f, sort_keys=True, indent=4)
utils.snapshot_src('.', os.path.join(args.work_dir, 'src'), '.gitignore')
print("---------------------------------------")
print(f"Policy: {args.policy}, Env: {args.env}, Seed: {args.seed}")
print("---------------------------------------")
env = gym.make(args.env)
# Set seeds
env.seed(args.seed)
env.action_space.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
kwargs = {
"state_dim": state_dim,
"action_dim": action_dim,
# IQL
"discount": args.discount,
"tau": args.tau,
"temperature": args.temperature,
"expectile": args.expectile,
}
# Initialize policy
if args.policy == 'IQL':
policy = IQL.IQL(**kwargs)
else:
raise NotImplementedError
replay_buffer = utils.ReplayBuffer(state_dim, action_dim)
replay_buffer.convert_D4RL(d4rl.qlearning_dataset(env))
if 'antmaze' in args.env:
# Center reward for Ant-Maze
# See https://github.com/aviralkumar2907/CQL/blob/master/d4rl/examples/cql_antmaze_new.py#L22
replay_buffer.reward = replay_buffer.reward - 1.0
if args.normalize:
mean, std = replay_buffer.normalize_states()
else:
mean, std = 0, 1
logger = Logger(args.work_dir, use_tb=True)
video = VideoRecorder(dir_name=args.video_dir)
for t in trange(int(args.max_timesteps)):
policy.train(replay_buffer, args.batch_size, logger=logger)
# Evaluate episode
if (t + 1) % args.eval_freq == 0:
eval_episodes = 100 if t+1 == int(args.max_timesteps) else args.eval_episodes
d4rl_score = eval_policy(args, t+1, video, logger, policy, args.env,
args.seed, mean, std, eval_episodes=eval_episodes)
if args.save_model:
policy.save(args.model_dir)
logger._sw.close()