forked from steffenoppel/seabirds
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseabird_index6.r
236 lines (167 loc) · 10.8 KB
/
seabird_index6.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
########## SEABIRD SPATIAL AGGREGATION INDEX ######################################################################################################
### v.3 7 March 2017 - includes sample size loop over each function derived from mIBA bootstrap function
### removed Morisita and Ripley's K index - see v.1 for emd code
### v. 4 12 Sept 2017, includes area increase by individual
### v. 5 15 Sept 2017, removed MCP and streamlined the polyCount function
## STEFFEN OPPEL 2016
## This function is based on the marine IBA 'polyCount' function (Lascelles et al. 2016)
## Modified to remove raster output and include polygons with no core ranges
## Added calculation and reporting of Morisita spatial aggregation index
## Requires input from 'batchUD' function, and a resolution (in degrees)
spatInd <- function(Polys, Res = 0.1)
{
Poly.Spdf <- spTransform(Polys, CRS=CRS("+proj=longlat +ellps=WGS84"))
DgProj <- Polys@proj4string
DateLine <- Poly.Spdf@bbox[1,1] < -178 & Poly.Spdf@bbox[1,2] > 178
UDbbox <- bbox(Poly.Spdf)
if(DateLine == TRUE) {UDbbox[1,] <- c(-180,180)}
BL <- floor(UDbbox[,1]) # + (Res/2) - removed on 16 Dec 2016 because it results in some polygons outside the grid
TR <- ceiling(UDbbox[,2])
NRow <- ceiling(sqrt((BL[1] - TR[1])^2)/Res)
NCol <- ceiling(sqrt((BL[2] - TR[2])^2)/Res) #+ (Res * 100) ### THIS LINE CAUSES PROBLEMS BECAUSE IT GENERATES LATITUDES >90 which will cause spTransform to fail
Grid <- GridTopology(BL, c(Res,Res), c(NRow, NCol))
newgrid<-SpatialGrid(Grid, proj4string = CRS("+proj=longlat + datum=wgs84"))
o <- over(newgrid, Poly.Spdf, returnList=TRUE, minDimension=0)
ct <- sapply(o, nrow)
#summary(ct)
SGDF <- SpatialGridDataFrame(newgrid, data=data.frame(prop=ct/length(Polys)))
#SGDF.proj <- spTransform(SGDF, DgProj)
#spplot(SGDF, "ct", col.regions=bpy.colors(20))
RT <- raster(SGDF)
Cells <- rasterToPolygons(RT)
plot(RT)
plot(Poly.Spdf, col=2, add=T)
### CALCULATE AREAS OF IBAs
try(IBAarea10<-sum(areaPolygon(Cells[Cells@data$prop>=0.01,]))/1000000,silent=T) ### IBA area with >10% of tracked pop
try(IBAarea125<-sum(areaPolygon(Cells[Cells@data$prop>=0.125,]))/1000000,silent=T) ### IBA area with >12.5% of tracked pop
try(IBAarea20<-sum(areaPolygon(Cells[Cells@data$prop>=0.2,]))/1000000,silent=T) ### IBA area with >20% of tracked pop
report<-data.frame(Scale=Res,extent=length(ct),E_W=NCol,N_S=NRow,
IBA10=ifelse('IBAarea10' %in% ls(),IBAarea10,0),
IBA125=ifelse('IBAarea125' %in% ls(),IBAarea125,0),
IBA20=ifelse('IBAarea20' %in% ls(),IBAarea20,0))
rm(IBAarea10,IBAarea125,IBAarea20)
#### CALCULATE STATISTICS FOR SPATIAL AGGREGATION ####
index<- as.numeric(dispindmorisita(ct))
report$Morisita<- index[1]
report$mclu<- index[2]
report$muni<- index[3]
report$imst<- index[4]
report$pchisq<- index[5]
return(report)
}
########## SEABIRD SPATIAL OVERLAP INDEX ######################################################################################################
## STEFFEN OPPEL 2016
## This function is based on the marine IBA 'batchUD' function (Lascelles et al. 2016)
## Modified to use adehabitatHR and calculate overlap indices
## returns now a list with the SpatialPolygonsDataFrame and a data.frame with the overlap indices
## updated in February 2017 to include EMD index (Kranstauber et al. 2017)
## updated in MARCH 2017 to remove EMD index but include bootstrap functionality
batchUDOL <- function(DataGroup, Scale = 10, UDLev = 50)
{
require(sp)
require(maptools)
require(rgdal)
require(adehabitatHR)
require(geosphere)
require(reshape)
if(!"Latitude" %in% names(DataGroup)) stop("Latitude field does not exist")
if(!"Longitude" %in% names(DataGroup)) stop("Longitude field does not exist")
if(!"ID" %in% names(DataGroup)) stop("ID field does not exist")
if(class(DataGroup)!= "SpatialPointsDataFrame") ## convert to SpatialPointsDataFrame and project
{
mid_point<-data.frame(centroid(cbind(DataGroup$Longitude, DataGroup$Latitude)))
DataGroup.Wgs <- SpatialPoints(data.frame(DataGroup$Longitude, DataGroup$Latitude), proj4string=CRS("+proj=longlat + datum=wgs84"))
DgProj <- CRS(paste("+proj=laea +lon_0=", mid_point$lon, " +lat_0=", mid_point$lat, sep=""))
DataGroup.Projected <- spTransform(DataGroup.Wgs, CRS=DgProj)
DataGroup <- SpatialPointsDataFrame(DataGroup.Projected, data = DataGroup)
}else{DgProj<-DataGroup@proj4string}
DataGroup$X <- DataGroup@coords[,1]
DataGroup$Y <- DataGroup@coords[,2]
UIDs <- unique(DataGroup$ID)
if(is.factor(DataGroup@data$ID)==T){DataGroup@data$ID<-droplevels(DataGroup@data$ID)} ### encountered weird error when unused levels were retained (27 Feb 2017)
##### ERRORS OCCUR IF ANIMALS HAVE ONLY FEW LOCATIONS, SO WE EXCLUDE THEM ###
UIDs <- names(which(table(DataGroup$ID)>5))
DataGroup <- DataGroup[DataGroup$ID %in% UIDs,]
##### IF SUBSAMPLING LEAVES TOO FEW DATA STOP THE LOOP ####
if(length(UIDs)>1){
##### USE NEW kernelUD function to bypass loop over individuals ####
TripCoords<-SpatialPointsDataFrame(DataGroup, data=data.frame(ID=DataGroup@data$ID,TrackTime=DataGroup@data$TrackTime))
TripCoords@data$TrackTime<-NULL
Ext <- (min(coordinates(TripCoords)[,1]) + 3 * diff(range(coordinates(TripCoords)[,1])))
if(Ext < (Scale * 1000 * 2)) {BExt <- ceiling((Scale * 1000 * 3)/(diff(range(coordinates(TripCoords)[,1]))))} else {BExt <- 5}
KDE.Surface <- adehabitatHR::kernelUD(TripCoords, h=(Scale * 1000), grid=1000, extent=BExt, same4all=T) ## NEEDS TO BE same4all=T otherwise overlap will produce rubbish output!
##### THIS FUNCTION CAN FAIL WHEN GRID IS TOO SMALL ###
try(KDE.Sp <- adehabitatHR::getverticeshr(KDE.Surface, percent = UDLev,unin = "m", unout = "km2"), silent=T)
##### IF GETVERTICES FAILED REPEAT UNTIL GRID IS LARGE ENOUGH ###
### this is very time consuming
### problem may occur from PTT data with very few locations in original data set
### interpolated data are all regularly spaced so kernels are impossible - need to find a way to exclude such 'tracks'
if(!('KDE.Sp' %in% ls())){
KDE.Surface <- adehabitatHR::kernelUD(TripCoords, h=(Scale * 1000), grid=1000, extent=0.2, same4all=T) ## NEEDS TO BE same4all=T otherwise overlap will produce rubbish output!
try(KDE.Sp <- adehabitatHR::getverticeshr(KDE.Surface, percent = UDLev,unin = "m", unout = "km2"), silent=T)
}
if(!('KDE.Sp' %in% ls())){
KDE.Surface <- adehabitatHR::kernelUD(TripCoords, h=(Scale * 1000), grid=500, extent=0.2, same4all=T) ## NEEDS TO BE same4all=T otherwise overlap will produce rubbish output!
try(KDE.Sp <- adehabitatHR::getverticeshr(KDE.Surface, percent = UDLev,unin = "m", unout = "km2"), silent=T)
}
if(!('KDE.Sp' %in% ls())){
KDE.Surface <- adehabitatHR::kernelUD(TripCoords, h=(Scale * 1000), grid=2000, extent=1.2, same4all=T) ## NEEDS TO BE same4all=T otherwise overlap will produce rubbish output!
try(KDE.Sp <- adehabitatHR::getverticeshr(KDE.Surface, percent = UDLev,unin = "m", unout = "km2"), silent=T)
}
#UIDs <- names(which(table(DataGroup$ID)>5))
KDE.Sp@proj4string <- DgProj
KDE.Wgs <- spTransform(KDE.Sp, CRS=CRS("+proj=longlat +ellps=WGS84"))
Tbl <- data.frame(Name_0 = rep(1, length(UIDs)), Name_1 = 1:length(UIDs), ID = UIDs)
row.names(Tbl) <- UIDs
KDE.Spdf <- SpatialPolygonsDataFrame(KDE.Sp, data=Tbl)
#plot(KDE.Spdf, border=factor(UIDs))
##### OVERLAYS IN THE polyCount FUNCTION WILL NOT WORK IF THE POLYGONS CONTAIN HOLES OR ARE ORPHANED
## simple fix to remove holes from polygon object
va90a <- spChFIDs(KDE.Spdf, paste(KDE.Spdf$Name_0, KDE.Spdf$Name_1, KDE.Spdf$ID, sep = ""))
va90a <- va90a[, -(1:4)]
va90_pl <- slot(va90a, "polygons")
va90_pla <- lapply(va90_pl, checkPolygonsHoles)
p4sva <- CRS(proj4string(va90a))
vaSP <- SpatialPolygons(va90_pla, proj4string = p4sva)
va90b <- SpatialPolygonsDataFrame(vaSP, data = as(va90a, "data.frame")) ### this returns an empty data frame
va90b@data<-KDE.Spdf@data ### this adds the original data back into the data frame - may not work if entire polygons are removed
#return(va90b) ## R does not allow return of multiple objects, hence combined in list below
##### CALCULATE BHATTACHARYS AFFINITY INDICES #####
### removed others to speed up process
OL1<-adehabitatHR::kerneloverlaphr(KDE.Surface, method = "BA",percent= UDLev, conditional = FALSE) ### set conditional=T will make overlap smaller because it sets everything to 0 outside overlap zone
## CALCULATE MEAN BUT REMOVE DIAGONAL
OL1<-as.data.frame(melt(OL1))
OL1<-OL1[!(OL1$X1==OL1$X2),]
olInd<-median(OL1$value) ## mean gives crazy values because occasionally index is >100
#### CALCULATE AREA INCREASE FOR EACH INDIVIDUAL
## added after StatsClub meeting on 9 Sept 2017
## pick start individual
#pollistnames<-as.character(va90b@data$ID) ## extract the names of the UD polygons for all individuals
#startINDS<-OL1$X1[which(OL1$value==max(OL1$value))][1] ## extract the names for the individuals with the greatest area overlap
areaByID<-data.frame(ID=as.character(va90b@data$ID),area=sapply(slot(va90b, "polygons"), slot, "area"), step=1, tot.area=0)
## start with the individual that has the smallest area ##
startINDS<-as.character(areaByID$ID[which(areaByID$area==min(areaByID$area))])[1]
startpolygon<-va90b[va90b@data$ID==startINDS,]
remainIDs<-UIDs[!(UIDs==startINDS)]
areaByID$tot.area[areaByID$ID==startINDS]<-areaByID$area[areaByID$ID==startINDS]
## loop over sample size of all individuals ###
for (al in 2:length(UIDs)){
## assess area increase for each added individual ###
stepincrease<-data.frame(ID=remainIDs, area=0)
for (lp in remainIDs) {
selinds<-c(as.character(startINDS),lp)
mergedpol<-unionSpatialPolygons(va90b[va90b@data$ID %in% selinds,], IDs=selinds)
stepincrease$area[stepincrease$ID==lp]<-area(mergedpol)
}
stepINDS<-as.character(stepincrease$ID[which(stepincrease$area==min(stepincrease$area))])[1] ### add one individual that leads to smallest area increase
areaByID$tot.area[areaByID$ID==stepINDS]<-stepincrease$area[stepincrease$ID==stepINDS]
areaByID$step[areaByID$ID==stepINDS]<-al
remainIDs<-remainIDs[!(remainIDs==stepINDS)]
}
#### POOL THE OUTPUT
outlist<-list("UDpolygons"=va90b,"OverlapIndex"=olInd,"AreaIncrease"=areaByID)
rm(remainIDs,KDE.Sp,va90b,olInd,OL1,va90a,KDE.Surface,TripCoords,DataGroup,KDE.Wgs,Tbl,KDE.Spdf,vaSP, stepincrease,mergedpol,startpolygon,selinds, stepINDS)
gc(verbose = F)
return(outlist)
} ### exit n>9 data point condition
} ### exit function loop