-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathtrain.py
276 lines (255 loc) · 11.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
from glob import glob
import argparse
import os
import os.path as osp
import random
import sqlite3
from time import time
from PIL import Image
from torch.autograd import Variable
from tqdm import tqdm, trange
import pandas as pd
import torch
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as transforms
from torchcv.models.ssd import SSDBoxCoder
from torchcv.datasets import ListDataset
from torchcv.transforms import (resize, random_flip, random_paste, random_crop,
random_distort)
from torchcv.models.void_models import FPNSSD512_2
from torchcv.loss.void_losses import SSDLoss
from utils import (set_seed, get_log_prefix, videoid2videoname, git_hash,
get_datetime, get_gpu_names)
from utils.sql import get_trial_id, save_stats, connect_and_execute
from evaluate import evaluate
parser = argparse.ArgumentParser(description='PyTorch SSD Training')
parser.add_argument('--gpu', default='0', type=int, help='GPU ID (nvidia-smi)') # noqa
parser.add_argument('--test-code', action='store_true', help='Only one epoch, only one batch, etc.') # noqa
parser.add_argument('--video-id', default=0, type=int, choices=[-1, 0, 1]) # noqa
parser.add_argument('--include-voidless', action='store_true', help='Include voidless images') # noqa
args = parser.parse_args()
video_name = videoid2videoname(args.video_id)
TRN_VIDEO_ID = video_name
VAL_VIDEO_ID = TRN_VIDEO_ID
RUN_NAME = 'save-based-on-trn'
if args.include_voidless:
RUN_NAME = "voidless-included_" + RUN_NAME
BATCH_SIZE = 16 if not args.test_code else 2
NUM_EPOCHS = 300 if not args.test_code else 1
IMG_SIZE = 512
DEBUG = False # Turn off shuffling and multiprocessing
NUM_WORKERS = 8 if not DEBUG else 0
SEED = 123
TRACK_BOX_EVOLUTION = True
IMAGE_DIR = "../../data/voids"
LABEL_DIR = "../void-detector/labels"
CKPT_DIR = "checkpoints"
ARCH = FPNSSD512_2
ARCH_KWARGS = {'weights_path': 'checkpoints/fpnssd512_20_trained.pth'}
print("Run name:", RUN_NAME)
set_seed(SEED)
img_dir = osp.join(IMAGE_DIR, TRN_VIDEO_ID)
voids = "_voids" if not args.include_voidless else ''
trn_labels_fpath = osp.join(LABEL_DIR, TRN_VIDEO_ID + voids + '.txt')
print("Training set:", trn_labels_fpath)
img_dir_test = osp.join(IMAGE_DIR, VAL_VIDEO_ID)
val_labels_fpath = osp.join(LABEL_DIR, VAL_VIDEO_ID + voids + '.txt')
print("Validation set:", val_labels_fpath)
shuffle = not DEBUG
os.makedirs(CKPT_DIR, exist_ok=True)
gpu_name = get_gpu_names()[args.gpu]
trn_name = osp.basename(trn_labels_fpath)
val_name = osp.basename(val_labels_fpath)
arch_name = ARCH.__name__
sqlite_path = "database.sqlite3"
trial_id = get_trial_id(sqlite_path) if not args.test_code else -1
git = git_hash()
print("Trial ID:", trial_id)
with torch.cuda.device(args.gpu):
# Model
print('==> Building model..')
net = ARCH(**ARCH_KWARGS)
net.cuda()
cudnn.benchmark = True # WARNING: Don't use if using images w/ diff shapes # TODO: Check for this condition automatically
best_loss = float('inf') # best test loss
start_epoch = 0 # start from epoch 0 or last epoch
criterion = SSDLoss()
lr = 1e-3
momentum = 0.9
weight_decay = 1e-4
optimizer = optim.SGD(net.parameters(), lr=lr, momentum=momentum,
weight_decay=weight_decay)
# Dataset
print('==> Preparing dataset..')
box_coder = SSDBoxCoder(net)
def trn_transform(img, boxes, labels):
img = random_distort(img)
if random.random() < 0.5:
img, boxes = random_paste(img, boxes, max_ratio=4,
fill=(123, 116, 103))
img, boxes, labels = random_crop(img, boxes, labels)
img, boxes = resize(img, boxes, size=(IMG_SIZE, IMG_SIZE),
random_interpolation=True)
img, boxes = random_flip(img, boxes)
img = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])(img)
boxes, labels = box_coder.encode(boxes, labels)
return img, boxes, labels
def val_transform(img, boxes, labels):
img, boxes = resize(img, boxes, size=(IMG_SIZE, IMG_SIZE))
img = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])(img)
boxes, labels = box_coder.encode(boxes, labels)
return img, boxes, labels
trn_ds = ListDataset(root=img_dir, list_file=trn_labels_fpath,
transform=trn_transform, test_code=args.test_code)
val_ds = ListDataset(root=img_dir_test, list_file=val_labels_fpath,
transform=val_transform, test_code=args.test_code)
trn_dl = torch.utils.data.DataLoader(trn_ds, batch_size=BATCH_SIZE,
shuffle=shuffle,
num_workers=NUM_WORKERS)
val_dl = torch.utils.data.DataLoader(val_ds, batch_size=BATCH_SIZE,
shuffle=False,
num_workers=NUM_WORKERS)
def calculate_loss(batch_idx, batch, volatile=False):
inputs, loc_targets, cls_targets = batch
inputs = Variable(inputs.cuda(), volatile=volatile)
loc_targets = Variable(loc_targets.cuda())
cls_targets = Variable(cls_targets.cuda())
loc_preds, cls_preds = net(inputs)
loss = criterion(loc_preds, loc_targets, cls_preds, cls_targets)
return loss
def train(epoch):
net.train()
trn_loss = 0
tqdm_trn_dl = tqdm(trn_dl, desc="Train", ncols=0)
for batch_idx, batch in enumerate(tqdm_trn_dl):
loss = calculate_loss(batch_idx, batch, volatile=False)
trn_loss += loss.data[0]
optimizer.zero_grad()
loss.backward()
optimizer.step()
return trn_loss / len(trn_dl)
def validate(epoch, log_prefix, run_name, tqdm_epochs, trn_loss):
net.eval()
val_loss = 0
tqdm_val_dl = tqdm(val_dl, desc="Validate", ncols=0)
for batch_idx, batch in enumerate(tqdm_val_dl):
loss = calculate_loss(batch_idx, batch, volatile=True)
val_loss += loss.data[0]
# Save checkpoint
global best_loss
val_loss /= len(val_dl)
if val_loss < best_loss or args.test_code:
ckpt = {
'trial_id': trial_id,
'epoch': epoch,
'state_dict': net.state_dict(),
'optim_state_dict': optimizer.state_dict()}
log_prefix = "trial-{:04d}_".format(trial_id) + log_prefix
values = [epoch, trn_loss, val_loss, lr, BATCH_SIZE,
IMG_SIZE]
layout = "_epoch-{:03d}_trn_loss-{:.6f}"
layout += "_val_loss-{:.6f}_lr-{:.2E}_bs-{:03d}_sz-{}_"
suffix = layout.format(*values) + run_name + '.pth'
ckpt_path = osp.join(CKPT_DIR, log_prefix + suffix)
torch.save(ckpt, ckpt_path)
ckpt_paths = glob("checkpoints/trial-{:04d}*".format(trial_id))
for path in list(set(ckpt_paths) - set([ckpt_path])):
os.remove(path)
tqdm_epochs.write(ckpt_path)
best_loss = val_loss
# Save stats to database
stats = dict(
trial_id=trial_id, datetime=get_datetime(), git=git, epoch=epoch,
trn_loss=trn_loss, val_loss=val_loss,
num_trn=len(trn_ds), num_val=len(val_ds),
trn_name=trn_name, val_name=val_name,
voidless_included=args.include_voidless,
arch=ARCH, loss_fn=criterion.__class__,
optimizer=optimizer.__class__,
lr=lr, batch_size=BATCH_SIZE, img_size=IMG_SIZE,
momentum=momentum, weight_decay=weight_decay, seed=SEED,
gpu_name=gpu_name, timestamp=time())
save_stats(sqlite_path, stats)
if TRACK_BOX_EVOLUTION:
cls_id = 0 # voids
img = Image.open("docs/20180215_190227_002190.jpg")
x = img.resize((IMG_SIZE, IMG_SIZE))
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))])
x = transform(x)
x = Variable(x, volatile=True).cuda()
loc_preds, cls_preds = net(x.unsqueeze(0))
boxes, labels, scores = box_coder.decode(
loc_preds.data.squeeze().cpu(),
F.softmax(cls_preds.squeeze(), dim=1).data.cpu(),
nms_thresh=1.0, score_thresh=0.22)
boxes = [box for i, box in enumerate(boxes) if labels[i] == cls_id]
for i, (x1, y1, x2, y2) in enumerate(boxes):
stats['x_min'] = x1
stats['y_min'] = y1
stats['x_max'] = x2
stats['y_max'] = y2
stats['score'] = scores[i]
stats['timestamp'] = time()
save_stats(sqlite_path, stats)
return val_loss, stats
if TRACK_BOX_EVOLUTION:
# This makes an awesome image but it takes too long to do it every
# time.
stats = dict(trial_id=trial_id, datetime=get_datetime(),
git=git, epoch=-1)
cls_id = 0 # voids
img = Image.open("docs/20180215_190227_002190.jpg")
x = img.resize((IMG_SIZE, IMG_SIZE))
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))])
x = transform(x)
x = Variable(x, volatile=True).cuda()
loc_preds, cls_preds = net(x.unsqueeze(0))
boxes, labels, scores = box_coder.decode(
loc_preds.data.squeeze().cpu(),
F.softmax(cls_preds.squeeze(), dim=1).data.cpu(),
nms_thresh=1.0, score_thresh=0.22)
boxes = [box for i, box in enumerate(boxes) if labels[i] == cls_id]
for i, (x1, y1, x2, y2) in enumerate(boxes):
stats['x_min'] = x1
stats['y_min'] = y1
stats['x_max'] = x2
stats['y_max'] = y2
stats['score'] = scores[i]
stats['timestamp'] = time()
save_stats(sqlite_path, stats)
log_prefix = get_log_prefix()
tqdm_epochs = trange(start_epoch, start_epoch+NUM_EPOCHS, desc="Epoch",
ncols=0)
for epoch in tqdm_epochs:
trn_loss = train(epoch)
val_loss, stats = validate(epoch, log_prefix, RUN_NAME, tqdm_epochs,
trn_loss)
avg_prec = evaluate(net, img_dir, trn_labels_fpath, IMG_SIZE,
args.test_code)['ap'][0]
print("Average precision, class 0:", avg_prec)
stats['avg_prec'] = avg_prec
stats['timestamp'] = time()
save_stats(sqlite_path, stats)
if args.test_code:
cmd = "SELECT * FROM trials WHERE trial_id = -1"
conn = sqlite3.connect(sqlite_path)
print(pd.read_sql_query(cmd, conn).to_string())
for fpath in glob("checkpoints/trial--001*"):
os.remove(fpath)
if False:
cmd = "DELETE FROM trials WHERE trial_id = -1"
connect_and_execute(sqlite_path, cmd)