forked from kamwoh/Car-Model-Classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
173 lines (123 loc) · 4.69 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import argparse
import json
import os
import torch
import torch.nn.functional as F
import time
from datasets import load_class_names, separate_class, prepare_loader
from models import construct_model
def test_v1(model, test_loader, device, config):
model.eval()
loss_meter = 0
acc_meter = 0
runcount = 0
elapsed = 0
i = 0
with torch.no_grad():
start_time = time.time()
for data, target in test_loader:
data = data.to(device)
target = target.to(device)
pred = model(data)
loss = F.cross_entropy(pred, target) * data.size(0)
acc = pred.max(1)[1].eq(target).float().sum()
loss_meter += loss.item()
acc_meter += acc.item()
i += 1
elapsed = time.time() - start_time
runcount += data.size(0)
print(f'[{i}/{len(test_loader)}]: '
f'Loss: {loss_meter / runcount:.4f} '
f'Acc: {acc_meter / runcount:.4f} ({elapsed:.2f}s)', end='\r')
print()
loss_meter /= runcount
acc_meter /= runcount
valres = {
'val_loss': loss_meter,
'val_acc': acc_meter,
'val_time': elapsed
}
print(f'Test Result: Loss: {loss_meter:.4f} Acc: {acc_meter:.4f} ({elapsed:.2f}s)')
return valres
def test_v2(model, test_loader, device, config):
model.eval()
loss_meter = 0
acc_meter = 0
make_acc_meter = 0
type_acc_meter = 0
runcount = 0
i = 0
with torch.no_grad():
start_time = time.time()
for data, target, make_target, type_target in test_loader:
data = data.to(device)
target = target.to(device)
make_target = make_target.to(device)
type_target = type_target.to(device)
pred, make_pred, type_pred = model(data)
loss_main = F.cross_entropy(pred, target)
loss_make = F.cross_entropy(make_pred, make_target)
loss_type = F.cross_entropy(type_pred, type_target)
loss = loss_main + config['make_loss'] * loss_make + config['type_loss'] * loss_type
acc = pred.max(1)[1].eq(target).float().sum()
make_acc = make_pred.max(1)[1].eq(make_target).float().sum()
type_acc = type_pred.max(1)[1].eq(type_target).float().sum()
loss_meter += loss.item() * data.size(0)
acc_meter += acc.item()
make_acc_meter += make_acc.item()
type_acc_meter += type_acc.item()
runcount += data.size(0)
i += 1
elapsed = time.time() - start_time
print(f'[{i}/{len(test_loader)}]: '
f'Loss: {loss_meter / runcount:.4f} '
f'Acc: {acc_meter / runcount:.4f} '
f'Make: {make_acc_meter / runcount:.4f} '
f'Type: {type_acc_meter / runcount:.4f} '
f'({elapsed:.2f}s)', end='\r')
print()
elapsed = time.time() - start_time
loss_meter /= runcount
acc_meter /= runcount
make_acc_meter /= runcount
type_acc_meter /= runcount
print(f'Test Result: Loss: {loss_meter:.4f} Acc: {acc_meter:.4f} ({elapsed:.2f}s)')
valres = {
'val_loss': loss_meter,
'val_acc': acc_meter,
'val_make_acc': make_acc_meter,
'val_type_acc': type_acc_meter,
'val_time': elapsed
}
return valres
def load_weight(model, path, device):
sd = torch.load(path, map_location=device)
model.load_state_dict(sd)
def main(args):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
config = json.load(open(args.config))
config['imgsize'] = (args.imgsize, args.imgsize)
exp_dir = os.path.dirname(args.config)
modelpath = exp_dir + '/best.pth'
class_names = load_class_names()
num_classes = len(class_names)
v2_info = separate_class(class_names)
num_makes = len(v2_info['make'].unique())
num_types = len(v2_info['model_type'].unique())
model = construct_model(config, num_classes, num_makes, num_types)
load_weight(model, modelpath, device)
model = model.to(device)
train_loader, test_loader = prepare_loader(config)
if config['version'] == 1:
test_fn = test_v1
else:
test_fn = test_v2
test_fn(model, test_loader, device, config)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Testing script for Cars dataset')
parser.add_argument('--config', required=True,
help='path to config.json')
parser.add_argument('--imgsize', default=400, type=int,
help='img size for testing (default: 400)')
args = parser.parse_args()
main(args)