-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain_and_eval_autokeras.py
129 lines (101 loc) · 4.17 KB
/
train_and_eval_autokeras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import argparse
import os
import time
import autokeras as ak
import kerastuner
import medmnist
import numpy as np
import tensorflow as tf
from medmnist import INFO, Evaluator
from medmnist.info import DEFAULT_ROOT
from tensorflow.keras.models import load_model
def main(data_flag, num_trials, input_root, output_root, gpu_ids, run, model_path):
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]=str(gpu_ids)
info = INFO[data_flag]
task = info['task']
_ = getattr(medmnist, INFO[data_flag]['python_class'])(
split="train", root=input_root, download=True)
output_root = os.path.join(output_root, data_flag, time.strftime("%y%m%d_%H%M%S"))
if not os.path.isdir(output_root):
os.makedirs(output_root)
npz_file = np.load(os.path.join(input_root, "{}.npz".format(data_flag)))
x_train = npz_file['train_images']
y_train = npz_file['train_labels']
x_val = npz_file['val_images']
y_val = npz_file['val_labels']
x_test = npz_file['test_images']
y_test = npz_file['test_labels']
if model_path is not None:
model = load_model(model_path, custom_objects=ak.CUSTOM_OBJECTS)
test(model, data_flag, x_train, 'train', output_root, run)
test(model, data_flag, x_val, 'val', output_root, run)
test(model, data_flag, x_test, 'test', output_root, run)
if num_trials == 0:
return
model = train(data_flag, x_train, y_train, x_val, y_val, num_trials, output_root, run)
test(model, data_flag, x_train, 'train', output_root, run)
test(model, data_flag, x_val, 'val', output_root, run)
test(model, data_flag, x_test, 'test', output_root, run)
def train(data_flag, x_train, y_train, x_val, y_val, num_trials, output_root, run):
clf = ak.ImageClassifier(
project_name=data_flag,
distribution_strategy=tf.distribute.MirroredStrategy(),
metrics=['AUC', 'accuracy'],
objective=kerastuner.Objective("val_auc", direction="max"),
overwrite=True,
max_trials=num_trials
)
clf.fit(
x_train,
y_train,
validation_data=(x_val, y_val),
epochs=20
)
model = clf.export_model()
try:
model.save(os.path.join(output_root, '%s_autokeras_%s' % (data_flag, run)), save_format="tf")
except Exception:
model.save(os.path.join(output_root, '%s_autokeras_%s.h5' % (data_flag, run)))
return model
def test(model, data_flag, x, split, output_root, run):
evaluator = medmnist.Evaluator(data_flag, split)
y_score = model.predict(x)
auc, acc = evaluator.evaluate(y_score, output_root, run)
print('%s auc: %.5f acc: %.5f' % (split, auc, acc))
return auc, acc
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_flag',
default='organmnist3d',
type=str)
parser.add_argument('--input_root',
default=DEFAULT_ROOT,
type=str)
parser.add_argument('--output_root',
default='./autokeras',
type=str)
parser.add_argument('--gpu_ids',
default='0',
type=str)
parser.add_argument('--run',
default='model1',
help='to name a standard evaluation csv file, named as {flag}_{split}_[AUC]{auc:.3f}_[ACC]{acc:.3f}@{run}.csv',
type=str)
parser.add_argument('--model_path',
default=None,
help='root of the pretrained model to test',
type=str)
parser.add_argument('--num_trials',
default=20,
help='max_trials of autokeras search space, the script would only test model if num_trials=0',
type=int)
args = parser.parse_args()
data_flag = args.data_flag
input_root = args.input_root
output_root = args.output_root
gpu_ids = args.gpu_ids
run = args.run
model_path = args.model_path
num_trials = args.num_trials
main(data_flag, num_trials, input_root, output_root, gpu_ids, run, model_path)