-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgenerate_train_data_model2.py
71 lines (54 loc) · 3.02 KB
/
generate_train_data_model2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#!/usr/bin/env python
# coding: utf-8
import pdb
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import warnings
from tqdm import tqdm
from generate_train_data import prepare
warnings.filterwarnings('ignore')
def generate_train_model2():
print('Generating train dataset for model2...')
train_label = pd.read_csv('../raw_data/train_labels.csv', encoding = 'utf-8')
train_label.columns = ['vehno', 'Label', 'CollectTime']
train_label['CollectTime'][train_label['vehno'] == 77] = '2020-10-20 13:37:12' # this seems to be system error of DF
fake_label = pd.read_csv('../user_data/fake_A_label.csv', encoding = 'utf-8')
fake_label.columns = ['vehno', 'Label', 'CollectTime']
com_label = pd.concat((train_label, fake_label), axis =0).reset_index(drop = True)
window = 10
train_x = []
train_y = []
for vehno in tqdm(com_label['vehno']):
if vehno <= 120:
data = prepare(vehno)
else:
data = prepare(vehno, 'test_allv2')
battery_change = list(data[data['battery_pos_on'].diff() == -1].index)
for idx in battery_change:
sample = data[max(0, idx-window): min(len(data),idx+window)].reset_index(drop = True)
# judege the label
label = 0
acc, is_acc = com_label.loc[com_label['vehno'] == vehno, 'CollectTime'].values[0], com_label.loc[com_label['vehno'] == vehno, 'Label'].values[0]
if is_acc == 1:
acc_time = datetime.strptime(acc, "%Y-%m-%d %H:%M:%S")
if sample['time'].iloc[0] < acc_time and acc_time < sample['time'].iloc[-1]:
label = 1
# create features
neg_con = int(sample['battery_neg_on'].iloc[0] == 1 and sample['battery_neg_on'].iloc[-1] == 0)
occ_con = int(sample['driver_occ_on'].iloc[0] == 1 and sample['driver_occ_on'].iloc[-1] == 0)
spd_con = int(np.median(sample['speed'][-10:]) == 0)
current_con = int(np.median(sample['current'][-10:]) == 0)
low_vol_drop = int(np.min(data['low_voltage'][idx-3:idx+3].diff()[1:]) < -0.9)
col_list = ['accelerator', 'torque', 'low_voltage', 'current', 'voltage', 'speed', 'accel', 'battery_pos_on',
'battery_neg_on',
'leaving_warn', 'seatbelt_on',
'hand_brake_on',
'gear_back', 'gear_parking', 'jerk', 'accelerator_diff',
'low_voltage_diff', 'occ_diff', 'key_diff', 'gear_diff', 'brake_diff', 'run']
des_fea = np.zeros(window*2*len(col_list))
des_fea[:len(sample[col_list].values.reshape(-1))] = sample[col_list].values.reshape(-1)
feature = np.append(np.array([neg_con, occ_con, spd_con, current_con, low_vol_drop]), des_fea)
train_x.append(feature)
train_y.append(label)
np.savez('../user_data/train_time_model2.npz', x = train_x, y = train_y)