-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpredict_test_a_des.py
101 lines (76 loc) · 3.73 KB
/
predict_test_a_des.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#!/usr/bin/env python
# coding: utf-8
import pdb
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import warnings
from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import f1_score
from tqdm import tqdm
warnings.filterwarnings('ignore')
import generate_train_data
from generate_train_data import prepare
from tsfresh import extract_features
from tsfresh.utilities.dataframe_functions import impute
from tsfresh.feature_extraction import ComprehensiveFCParameters
fc_parameters = {
"c3": [{"lag": lag} for lag in [2]],
"augmented_dickey_fuller": [{"attr": "teststat"}],
"energy_ratio_by_chunks": [{"num_segments": 10, "segment_focus": 4}],
"fourier_entropy": [{"bins": x} for x in [ 20]],
"permutation_entropy": [{"tau": 1, "dimension": x} for x in [3, 5, 7]]}
def predict_a_des():
print('Generate A round test predict based on descriptive features')
temp = np.load('../user_data/train_des.npz')
train_x, train_y = temp['x'], temp['y']
X, y = np.nan_to_num(train_x, posinf = 10, neginf = -10), np.array(train_y)
from sklearn.utils import shuffle
X, y = shuffle(X, y)
model = AdaBoostClassifier(n_estimators = 20)
model.fit(X, y)
y_ = model.predict(X)
score = f1_score(y, y_)
print(score)
window = 40
acc_list = []
for vehno in tqdm(range(121, 211)):
acc_flag = False
acc_time = ''
data = prepare(vehno, 'test_allv2')
battery_change = data[data['battery_pos_on'].diff() == -1]
max_prob = -1
for idx in battery_change.index:
sample = data[idx-window: idx+window].reset_index(drop = True)
# create features
neg_con = int(sample['battery_neg_on'].iloc[0] == 1 and sample['battery_neg_on'].iloc[-1] == 0)
occ_con = int(sample['driver_occ_on'].iloc[0] == 1 and sample['driver_occ_on'].iloc[-1] == 0)
spd_con = int(np.median(sample['speed'][-10:]) == 0)
current_con = int(np.median(sample['current'][-10:]) == 0)
low_vol_drop = int(np.min(data['low_voltage'][idx-3:idx+3].diff()[1:]) < -0.9)
des = sample.describe()
col_list = ['accelerator', 'torque', 'low_voltage', 'current', 'voltage', 'speed', 'accel', 'battery_pos_on',
'battery_neg_on',
'leaving_warn', 'seatbelt_on',
'hand_brake_on',
'gear_back', 'gear_parking', 'jerk', 'accelerator_diff',
'low_voltage_diff', 'occ_diff', 'key_diff', 'gear_diff', 'brake_diff']
des_fea = des[col_list][1:].values.reshape(-1)
sample = sample[col_list]
sample['id'] = 1
ts_fea = extract_features(sample.replace([np.inf, -np.inf],0).fillna(0), column_id = 'id',
default_fc_parameters=fc_parameters, n_jobs = 0, disable_progressbar=True)
feature = np.append(np.array([neg_con, occ_con, spd_con, current_con, low_vol_drop]), des_fea)
feature = np.append(feature, ts_fea.values)
x_data = np.nan_to_num([feature], posinf = 100, neginf = -100)
pre = model.predict(x_data)[0]
prob = model.predict_proba(x_data)[0][1]
if max_prob < prob:
max_prob = prob
acc_flag = True
acc_time = data['time'][idx]
acc_list.append([vehno, int(acc_flag), str(acc_time), max_prob])
# print([vehno, int(acc_flag), str(acc_time), max_prob])
model_res = pd.DataFrame(acc_list, columns = ['vehno','Label','CollectTime', 'prob'])
out = model_res.rename(columns = {'vehno': '车号'})
out.to_csv('../user_data/model_des_a_predict.csv', index = False)