-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
65 lines (49 loc) · 2.45 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from __future__ import print_function
import argparse
import os
import torch
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
from networks import define_G, define_D, GANLoss, get_scheduler, update_learning_rate
from data import get_training_set, get_test_set
from utils import is_image_file, load_img, save_img
# Testing settings
T_DATA = "C:/Users/Lab/PycharmProjects/pix2pix-pytorch/dataset/test"
parser = argparse.ArgumentParser(description='pix2pix-pytorch-implementation')
parser.add_argument('--dataset', required=False, default='.', help='dataset')
parser.add_argument('--direction', type=str, default='B2A', help='a2b or b2a')
parser.add_argument('--nepochs', type=int, default=200, help='saved model of which epochs')
parser.add_argument('--cuda', action='store_true', help='use cuda')
parser.add_argument('--threads', type=int, default=4, help='number of threads for data loader')
parser.add_argument('--test_batch_size', type=int, default=1, help='test batch size')
opt = parser.parse_args()
print(opt)
print('===> Loading datasets')
root_path = "dataset/"
test_set = get_test_set(os.path.join(root_path, opt.dataset), opt.direction)
testing_data_loader = DataLoader(dataset=test_set,
num_workers=opt.threads,
batch_size=opt.test_batch_size,
shuffle=False)
device = torch.device("cuda:0" if opt.cuda else "cpu")
model_path = "checkpoint/{}/netG_model_epoch_{}.pth".format(opt.dataset, opt.nepochs)
net_g = torch.load(model_path).to(device)
if opt.direction == "a2b":
image_dir = os.path.join("dataset", opt.dataset, "test", "a")
else:
image_dir = os.path.join("dataset", opt.dataset, "test", "b")
image_filenames = [x for x in os.listdir(image_dir) if is_image_file(x)]
transform_list = [transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))]
transform = transforms.Compose(transform_list)
for image_name in image_filenames:
img = load_img(os.path.join(image_dir, image_name))
img = transform(img)
input = img.unsqueeze(0).to(device)
out = net_g(input)
out_img = out.detach().squeeze(0).cpu()
result_dir = os.path.join("result", opt.dataset)
if not os.path.exists(result_dir):
os.makedirs(result_dir)
save_img(out_img, os.path.join(result_dir, image_name))