-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmyutils.py
340 lines (265 loc) · 12.6 KB
/
myutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import os
import pandas as pd
import numpy as np
import random
import torch
import tensorflow as tf
# metric
from sklearn.metrics import roc_auc_score, average_precision_score
# plot
import matplotlib.pyplot as plt
# statistical analysis
from scipy.stats import wilcoxon
class Utils():
def __init__(self):
pass
# remove randomness,固定结果
def set_seed(self, seed):
# os.environ['PYTHONHASHSEED'] = str(seed)
# os.environ['TF_CUDNN_DETERMINISTIC'] = 'true'
# os.environ['TF_DETERMINISTIC_OPS'] = 'true'
#basic seed
np.random.seed(seed)
random.seed(seed)
#tensorflow seed
try:
tf.random.set_seed(seed) # for tf >= 2.0
except:
tf.set_random_seed(seed)
tf.random.set_random_seed(seed)
#pytorch seed
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# 检测是否有GPU
def get_device(self, gpu_specific=False):
if gpu_specific:
if torch.cuda.is_available():
n_gpu = torch.cuda.device_count()
print(f'number of gpu: {n_gpu}')
print(f'cuda name: {torch.cuda.get_device_name(0)}')
print('GPU is on')
else:
print('GPU is off')
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
else:
device = torch.device("cpu")
return device
#根据两个实数生成唯一的实数
def unique(self, a, b):
u = 0.5 * (a + b) * (a + b + 1) + b
return int(u)
def data_description(self, X, y):
des_dict = {}
des_dict['Samples'] = X.shape[0]
des_dict['Features'] = X.shape[1]
des_dict['Anomalies'] = sum(y)
des_dict['Anomalies Ratio(%)'] = round((sum(y) / len(y)) * 100, 2)
print(des_dict)
#返回异常检测中常用的两个metric结果: AUC-ROC以及AUC-PR
def metric(self, y_true, y_score, pos_label=1):
aucroc = roc_auc_score(y_true=y_true, y_score=y_score)
aucpr = average_precision_score(y_true=y_true, y_score=y_score, pos_label=1)
return {'aucroc':aucroc, 'aucpr':aucpr}
#重采样函数
def sampler(self, X_train, y_train, batch_size):
index_u = np.where(y_train == 0)[0]
index_a = np.where(y_train == 1)[0]
n = 0
while len(index_u) >= batch_size:
self.set_seed(n)
index_u_batch = np.random.choice(index_u, batch_size // 2, replace=False)
index_u = np.setdiff1d(index_u, index_u_batch)
index_a_batch = np.random.choice(index_a, batch_size // 2, replace=True)
# batch index
index_batch = np.append(index_u_batch, index_a_batch)
# shuffle
np.random.shuffle(index_batch)
if n == 0:
X_train_new = X_train[index_batch]
y_train_new = y_train[index_batch]
else:
X_train_new = np.append(X_train_new, X_train[index_batch], axis=0)
y_train_new = np.append(y_train_new, y_train[index_batch])
n += 1
return X_train_new, y_train_new
def sampler_2(self, X_train, y_train, step, batch_size=512):
index_u = np.where(y_train == 0)[0]
index_a = np.where(y_train == 1)[0]
for i in range(step):
index_u_batch = np.random.choice(index_u, batch_size // 2, replace=True)
index_a_batch = np.random.choice(index_a, batch_size // 2, replace=True)
# batch index
index_batch = np.append(index_u_batch, index_a_batch)
# shuffle
np.random.shuffle(index_batch)
if i == 0:
X_train_new = X_train[index_batch]
y_train_new = y_train[index_batch]
else:
X_train_new = np.append(X_train_new, X_train[index_batch], axis=0)
y_train_new = np.append(y_train_new, y_train[index_batch])
return X_train_new, y_train_new
# for PReNet
def sampler_pairs(self, X_train_tensor, y_train, epoch, batch_num, batch_size, s_a_a, s_a_u, s_u_u):
'''
X_train_tensor: the input X in the torch.tensor form
y_train: label in the numpy.array form
batch_num: generate how many batches in one epoch
batch_size: the batch size
'''
data_loader_X = []
data_loader_y = []
index_a = np.where(y_train == 1)[0]
index_u = np.where(y_train == 0)[0]
for i in range(batch_num): # i.e., drop_last = True
index = []
# 分别是(a,a); (a,u); (u,u)共6部分样本
for j in range(6):
# generate unique seed and set seed
# seed = self.unique(epoch, i)
# seed = self.unique(seed, j)
# self.set_seed(seed)
if j < 3: # 其中batch size // 4与原论文中一致
index_sub = np.random.choice(index_a, batch_size // 4, replace=True)
index.append(list(index_sub))
if j == 3:
index_sub = np.random.choice(index_u, batch_size // 4, replace=True) # unlabel部分可以变为False
index.append(list(index_sub))
if j > 3:
index_sub = np.random.choice(index_u, batch_size // 2, replace=True) # unlabel部分可以变为False
index.append(list(index_sub))
# index[0] + index[1] = (a,a), batch / 4
# index[2] + index[2] = (a,u), batch / 4
# index[4] + index[5] = (u,u), batch / 2
index_left = index[0] + index[2] + index[4]
index_right = index[1] + index[3] + index[5]
X_train_tensor_left = X_train_tensor[index_left]
X_train_tensor_right = X_train_tensor[index_right]
# generate label
y_train_new = np.append(np.repeat(s_a_a, batch_size // 4), np.repeat(s_a_u, batch_size // 4))
y_train_new = np.append(y_train_new, np.repeat(s_u_u, batch_size // 2))
y_train_new = torch.from_numpy(y_train_new).float()
# shuffle
index_shuffle = np.arange(len(y_train_new))
index_shuffle = np.random.choice(index_shuffle, len(index_shuffle), replace=False)
X_train_tensor_left = X_train_tensor_left[index_shuffle]
X_train_tensor_right = X_train_tensor_right[index_shuffle]
y_train_new = y_train_new[index_shuffle]
# save
data_loader_X.append([X_train_tensor_left, X_train_tensor_right]) # 注意left和right顺序
data_loader_y.append(y_train_new)
return data_loader_X, data_loader_y
#返回梯度
def grad_norm(self, grad_tuple):
grad = torch.tensor([0.0])
for i in range(len(grad_tuple)):
grad += torch.norm(grad_tuple[i])
return grad
# visualize the gradient flow in network
def plot_grad_flow(self, named_parameters):
ave_grads = []
layers = []
for n, p in named_parameters:
if (p.requires_grad) and ("bias" not in n):
layers.append(n)
ave_grads.append(p.grad.abs().mean())
plt.plot(ave_grads, alpha=0.3, color="b")
plt.hlines(0, 0, len(ave_grads) + 1, linewidth=1, color="k")
plt.xticks(range(0, len(ave_grads), 1), layers, rotation="vertical")
plt.xlim(xmin=0, xmax=len(ave_grads))
plt.xlabel("Layers")
plt.ylabel("average gradient")
plt.title("Gradient flow")
plt.grid(True)
# def torch_wasserstein_loss(tensor_a, tensor_b):
# # Compute the first Wasserstein distance between two 1D distributions.
# return (torch_cdf_loss(tensor_a, tensor_b, p=1))
#Calculate the First Wasserstein Distance
def torch_cdf_loss(self, tensor_a, tensor_b, p=1):
# last-dimension is weight distribution
# p is the norm of the distance, p=1 --> First Wasserstein Distance
# to get a positive weight with our normalized distribution
# we recommend combining this loss with other difference-based losses like L1
# normalize distribution, add 1e-14 to divisor to avoid 0/0
tensor_a = tensor_a / (torch.sum(tensor_a, dim=-1, keepdim=True) + 1e-14)
tensor_b = tensor_b / (torch.sum(tensor_b, dim=-1, keepdim=True) + 1e-14)
# make cdf with cumsum
cdf_tensor_a = torch.cumsum(tensor_a, dim=-1)
cdf_tensor_b = torch.cumsum(tensor_b, dim=-1)
# choose different formulas for different norm situations
if p == 1:
cdf_distance = torch.sum(torch.abs((cdf_tensor_a - cdf_tensor_b)), dim=-1)
elif p == 2:
cdf_distance = torch.sqrt(torch.sum(torch.pow((cdf_tensor_a - cdf_tensor_b), 2), dim=-1))
else:
cdf_distance = torch.pow(torch.sum(torch.pow(torch.abs(cdf_tensor_a - cdf_tensor_b), p), dim=-1), 1 / p)
cdf_loss = cdf_distance.mean()
return cdf_loss
#Calculate the loss like devnet in PyTorch
def cal_loss(self, y, y_pred, mode='devnet'):
if mode == 'devnet':
y_pred.squeeze_()
ref = torch.randn(5000) # sampling from the normal distribution
dev = (y_pred - torch.mean(ref)) / torch.std(ref)
# print(f'mean:{torch.mean(ref)}, std:{torch.std(ref)}')
inlier_loss = torch.abs(dev)
outlier_loss = torch.max(5.0 - dev, torch.zeros_like(5.0 - dev))
loss = torch.mean((1 - y) * inlier_loss + y * outlier_loss)
else:
raise NotImplementedError
return loss
def result_process(self, result_show, name, std=False):
# average performance
ave_metric = np.mean(result_show, axis=0).values
std_metric = np.std(result_show, axis=0).values
# statistical test
wilcoxon_df = pd.DataFrame(data=None, index=result_show.columns, columns=result_show.columns)
for i in range(wilcoxon_df.shape[0]):
for j in range(wilcoxon_df.shape[1]):
if i != j:
wilcoxon_df.iloc[i, j] = \
wilcoxon(result_show.iloc[:, i] - result_show.iloc[:, j], alternative='greater')[1]
# average rank
result_show.loc['Ave.rank'] = np.mean(result_show.rank(ascending=False, method='dense', axis=1), axis=0)
# average metric
if std:
result_show.loc['Ave.metric'] = [str(format(round(a,3), '.3f')) + '±' + str(format(round(s,3), '.3f'))
for a,s in zip(ave_metric, std_metric)]
else:
result_show.loc['Ave.metric'] = [str(format(round(a, 3), '.3f')) for a, s in zip(ave_metric, std_metric)]
# the p-value of wilcoxon statistical test
result_show.loc['p-value'] = wilcoxon_df.loc[name].values
for _ in result_show.index:
if _ in ['Ave.rank', 'p-value']:
result_show.loc[_, :] = [format(round(_, 2), '.2f') for _ in result_show.loc[_, :].values]
# result_show = result_show.astype('float')
# result_show = result_show.round(2)
return result_show
def result_process_new(self, result_show, name, std=False):
# average performance
ave_metric = np.mean(result_show, axis=0).values
std_metric = np.std(result_show, axis=0).values
# statistical test
wilcoxon_df = pd.DataFrame(data=None, index=result_show.columns, columns=result_show.columns)
for i in range(wilcoxon_df.shape[0]):
for j in range(wilcoxon_df.shape[1]):
if i != j:
wilcoxon_df.iloc[i, j] = \
wilcoxon(result_show.iloc[:, i] - result_show.iloc[:, j], alternative='greater')[1]
# improvement
result_show.loc['Perf.'] = ave_metric
# average metric
if std:
result_show.loc['Ave.metric'] = [str(format(round(a,3), '.3f')) + '±' + str(format(round(s,3), '.3f'))
for a,s in zip(ave_metric, std_metric)]
else:
result_show.loc['Ave.metric'] = [str(format(round(a, 3), '.3f')) for a, s in zip(ave_metric, std_metric)]
# the p-value of wilcoxon statistical test
result_show.loc['p-value'] = wilcoxon_df.loc[name].values
for _ in result_show.index:
if _ in ['Ave.rank', 'p-value']:
result_show.loc[_, :] = [format(round(_, 4), '.4f') for _ in result_show.loc[_, :].values]
# result_show = result_show.astype('float')
# result_show = result_show.round(2)
return result_show