-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgcelldata.hoc
384 lines (323 loc) · 11.4 KB
/
gcelldata.hoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
// gcelldata.hoc -- routines for processing the empirical data used by the
// simulation (gcell = Gordon (Shepherd) cell).
// Globals and routines pertaining to the empirical data used from
// (Weiler et al., 2008) and other Gordon Shepherd projects.
//
// Last update: 3/12/11 (georgec)
//* Globals
numgcs = 0 // number of Gordon cells (set later)
numgcxs = 16 // number of horizontal bins in Gordon cell conv data
xbinwid = 100 // x bin width (in microns)
numzs = 16 // number of depth bins
zbinwid = 100 // z (depth) bin width (in microns)
lambeg = 0 // the first z bin for a cell layer (set in proc)
lamend = 0 // the last z bin for a cell layer (set in proc)
sigub = -15.0 // significant upper bound (in pA) for the data values
objref wdnq // (Weiler et al., 2008) data NQS table
objref hupnq // hookup NQS table
objref convnq // test cell convergence NQS table (made from hupnq)
strdef gsprepdir // directory for Gordon Shepherd preprocessed data
gsprepdir = "."
GCELLTYPE_NORMAL = 0 // normal Gordon cell type (otherwise unlabeled)
GCELLTYPE_CXSPINAL = 1 // corticospinal layer 5 cell
GCELLTYPE_CXSTRIATAL = 2 // contralateral corticostriatal layer 5 cell
//* Routines
//** simdatainit() -- load and/or preprocess Gordon cell data
proc simdatainit () { local a,ii,tnumgcs localobj v1,v2,v3
// Allocate temporary vectors.
a = allocvecs(v1,v2,v3)
// Load the NQS tables for Gordon's data.
{sprint(tstr,"%s/gmgs102.nqs",gsprepdir)}
rdnqss(tstr)
// Load the appropriate preprocessed cells data table.
wdnq = new NQS()
// {sprint(tstr,"%s/wdmaps.nqs",gsprepdir)} // culled cells with no preprocessing
{sprint(tstr,"%s/wdmaps2.nqs",gsprepdir)} // culled cells with interpolation applied
wdnq.rd(tstr) // culled cells with interpolation applied
// Set the number of Gordon cells.
numgcs = wdnq.m
// Make a new NQS table for only cells with neg responses over a cuttoff.
// wdnq = cullcells(raw, sigub)
// Create the hookup table.
mkhuptable()
// Scale hookup table weights (clip Gordon cell values between the negatives
// of the first 2 values, then scale these values to the last 2 values.
scalehupwts(0,50,0,5)
// scalehupwts(0,50,0,5) // original
// Add new columns to the cells table for (Gordon) cell number, Gordon
// cell type, and z bin.
tnumgcs = cells.size
v1.resize(tnumgcs)
v2.resize(tnumgcs)
v3.resize(tnumgcs)
v1.indgen(0,tnumgcs-1,1)
v2.fill(GCELLTYPE_NORMAL) // all cells are normal Gordon cells for now
for ii=0,tnumgcs-1 {
v3.x(ii) = gcellnum2zbin(ii)
}
cells.resize("cellnum",v1,"gcelltyp",v2,"zbin",v3)
// Deallocate the temporary vectors.
dealloc(a)
}
//** gcellnum2zbin(gordon_cell_type) -- translate Gordon cell number to z
// (depth) bin
func gcellnum2zbin () { local a,ii,zbin,ysoma localobj vv1
a = allocvecs(vv1)
// Get the micron distance of the cell from the pia.
ysoma = cells.v[2].x($1)
vv1.indgen(zbinwid,zbinwid * numzs,zbinwid)
zbin = -1
ii = numzs-1
while (ii >= 0) {
if (ysoma <= vv1.x(ii)) {
zbin = ii
}
ii -= 1
}
dealloc(a)
return zbin
}
//** getlambin(model_cell type) - get the first and last laminar bin for cell
// type
proc getlambin () { local lyr
lyr=GetLyr($1)
if (lyr == 2) {
lambeg = 1
lamend = 4
} else if (lyr == 5) {
lambeg = 5
lamend = 10
} else if (lyr == 6) {
lambeg = 11
lamend = 13
} else {
print "ERROR: Cannot find laminar bins for cell type #", $1
}
}
//** cullcells() -- make a new NQS table for cells only above neg. cutoff
obfunc cullcells () { local a,cutoff,cullcount localobj iq,oq,v1
iq = $o1 // input nq (with 102 cells)
cutoff = $2 // cutoff value for minimum
oq = new NQS() // output nq
a = allocvecs(v1) // alloc vector for keeping culled cell ID nums
// Loop over all column vectors of the NQS table...
for ii=0,iq.m-1 {
// If the minimum data value is below the cutoff value (e.g. -20 pA)...
if (iq.v[ii].min < cutoff) {
oq.resize(iq.s[ii].s,iq.v[ii])
v1.append(ii)
}
}
// Copy the cull cell ID numbers into the .x vector of the table
oq.x.copy(v1)
// Deallocate vectors.
dealloc(a)
return oq
}
//** chkgapcontig() -- check for occurences of places in data where
// points were removed because of closeness to soma
proc chkgapcontig () { local a,ii,jj localobj v1,v2
// Allocate vectors
a = allocvecs(v1,v2)
// Loop over all of the cells in the table...
for ii=0,wdnq.m-1 {
// print "Cell #", ii
// Loop over the 16 rows of the raw data matrix...
for jj=0,15 {
// printf("Row #%d: ", jj)
v1.resize(16)
v2.resize(16)
v1.mrow(wdnq.v[ii],jj,16) // put the jjth row in v1
v2.indvwhere(v1,"==",1e-9) // pull out indices where number = 1e-9
if (v2.size > 0) {
iscontig = v2.ismono(3) // set true if indices are consecutive
if (iscontig) {
// print "contiguous"
} else {
// print "NONCONTIGUOUS"
// if (v1.min() < -10.0) {
printf("Cell #%d, Row #%d: ",ii,jj)
vlk(v1)
// }
}
} else {
// print "no gap"
}
}
// print "------"
}
// Dealloc vectors.
dealloc(a)
}
//** lininterp() -- linear interpolation function, returning a vector
obfunc lininterp () { local val1,val2,veclen,intstep localobj vint
val1 = $1
val2 = $2
veclen = $3
vint = new Vector(veclen)
// Calculate a (positive-valued) even step.
intstep = abs(val2 - val1) / (veclen - 1)
// If 2nd value higher, do normal indgen.
if (val2 > val1) {
vint.indgen(val1,val2,intstep)
// If 1st value higher, flip value, do indgen, and flip result.
} else if (val1 > val2) {
vint.indgen(val2,val1,intstep)
vint.reverse()
// If values equal, just fill with the first value.
} else {
vint.fill(val1)
}
return vint
}
//** interpgaps() -- interpolate through the "infinity" gaps in the data
proc interpgaps () { local a,ii,jj,kk,val,infbin,srb,erb,intstp localobj v1,v2,v3
// Allocate vectors
a = allocvecs(v1,v2,v3)
// Loop over all of the cells in the table...
for ii=0,wdnq.m-1 {
// print "Cell #", ii
// Loop over the 16 rows of the raw data matrix...
for jj=0,15 {
// printf("Row #%d: ", jj)
v1.resize(16)
v2.resize(16)
v1.mrow(wdnq.v[ii],jj,16) // put the jjth row in v1
v2.indvwhere(v1,"==",1e-9) // pull out indices where number = 1e-9
// Only worry about rows where we have 1e-9...
if (v2.size > 0) {
srb = -1
erb = -1
for kk=0,v2.size-1 {
// Get the index of the inf (1e-9) bin.
infbin = v2.x(kk)
// Deal with the edge case where bin 0 is 1e-9.
// Note: if we had runs of more than 1, we'd need to deal with that.
if (infbin == 0) {
v1.x(0) = v1.x(1) // Set to the next bin
// Deal with the edge case where bin 15 is 1e-9.
// Note: if we had runs of more than 1, we'd need to deal with that.
} else if (infbin == 15) {
v1.x(15) = v1.x(14) // Set to the previous bin
// If we have not started a run of Infs yet, start a new run
} else if (srb == -1) {
srb = infbin - 1
erb = infbin + 1
// If we have started a run and the new bin contig with the run
} else if (infbin == erb) {
erb += 1
// If the next bin is not contiguous with the latest run
} else {
// Linearly interpolate for the run.
// printf("Cell #%d, Row #%d (%d to %d): ",ii,jj,srb,erb)
// printf("interp between %f and %f\n",v1.x(srb),v1.x(erb))
// vlk(v2)
v3 = lininterp(v1.x(srb),v1.x(erb),erb-srb+1)
v1.copy(v3,srb) // copy linear interpolation vector back to row
// vlk(v1)
// Start a new run.
srb = infbin - 1
erb = infbin + 1
}
// If we're at the end of the list of inf bins, and have started a
// run, output.
if ((kk == v2.size-1) && (srb != -1)) {
// Linearly interpolate for the run.
// printf("Cell #%d, Row #%d (%d to %d): ",ii,jj,srb,erb)
// printf("interp between %f and %f\n",v1.x(srb),v1.x(erb))
// vlk(v2)
v3 = lininterp(v1.x(srb),v1.x(erb),erb-srb+1)
v1.copy(v3,srb) // copy linear interpolation vector back to row
// vlk(v1)
}
}
// Put row v1 back in the NQS data (saving changes).
v1.msetrow(wdnq.v[ii],jj,16)
}
}
// print "------"
}
// Dealloc vectors.
dealloc(a)
}
//** mkhuptable() -- make a hookup NQS table from wdnq.
proc mkhuptable () { local a,ii,jj,kk,cz localobj vv1
// Allocate scratch vectors.
a = allocvecs(vv1)
// Make the NQS table.
hupnq = new NQS("srcz","destcell","destxshift","destz","wt")
// Loop over all of the depth bins...
for ii=0,numzs-1 {
// Loop over all "Gordon cells"...
for jj=0,wdnq.m-1 {
// Grab row ii, the row corresponding to the depth bin we're at.
vv1.mrow(wdnq.v[jj],ii,numgcxs) // numgcxs = 16 now
// Loop over all x bins in the row...
for kk=0,vv1.size-1 {
// If the value is less than the significant upper bound...
if (vv1.x(kk) < sigub) {
// Record the entry (source z bin, destination cell #,
// destination x shift, destination z bin (with respect to
// 7.5), weight).
cz = gcellnum2zbin(wdnq.x.x(jj)) // get the cell's z bin
hupnq.append(ii, wdnq.x.x(jj), 7.5-kk, cz, vv1.x(kk))
}
} // for kk
} // for jj
} // for ii
// Deallocate scratch vectors.
dealloc(a)
}
//** scalehupwts() -- scale the hookup table weights so they are converted
// from -pA values to sensible weight values
proc scalehupwts () { local a,ii,gvmin,gvmax,wvmin,wvmax localobj vv1
gvmin = $1
gvmax = $2
wvmin = $3
wvmax = $4
// Allocate scratch vectors.
a = allocvecs(vv1)
// Read the old Gordon cell weights.
vv1 = hupnq.getcol("wt")
// Make the weights positive.
vv1.mul(-1)
// Clip the Gordon cell weights between gvmin and gvmax.
for ii=0,vv1.size-1 {
if (vv1.x(ii) < gvmin) vv1.x(ii) = gvmin
if (vv1.x(ii) > gvmax) vv1.x(ii) = gvmax
}
// Scale between wvmin and wvmax.
vv1.scale(wvmin,wvmax)
// Set the new weights.
// hupnq.setcol("wt",vv1)
// Deallocate scratch vectors.
dealloc(a)
}
//** huptable2cellconv() -- test function for showing that huptable has
// all significant convergence info
obfunc huptable2cellconv () { local a,ii,jj localobj v1
// Allocate vectors.
a = allocvecs(v1)
// Create the new empty convergence table.
convnq = new NQS()
convnq.cp(wdnq) // copy from original table
for ii=0,convnq.m-1 { // zero out all data
convnq.v[ii].fill(0)
}
// Loop over all "Gordon" cells...
for ii=0,numgcs-1 {
// Select just the rows of the hupnq corresponding to the desired cell.
hupnq.select("destcell",wdnq.x.x(ii))
// Loop over all found rows for the desired cell...
for jj=0,hupnq.size-1 {
v1 = hupnq.getrow(jj)
// Set the convergence matrix for cell ii.
convnq.v[ii].mset(v1.x(0),int(v1.x(2)-7.5),numgcxs,v1.x(4))
} // for jj
} // for ii
// Toggle back to the full table for hupnq.
hupnq.tog
// Deallocate scratch vectors.
dealloc(a)
return convnq
}