-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathglures23.mod
206 lines (203 loc) · 4.85 KB
/
glures23.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
TITLE glutamate summation for estimation of PPR, 2D-3D diffusion
COMMENT
Author: Elena Saftenku, 2003
ENDCOMMENT
NEURON{
POINT_PROCESS GrC_Glures23
RANGE glu,rPSD,rabs,nu, gluspill,gludir,alpha,Rmf
RANGE taurec,taufacil,tauin, u0, usr,Deff,c0cleft,meandist,rabs,
alpha,nua
RANGE tm1,td1,ts1
RANGE inclugludir,inclugluspill, Popeak,alpha,Podir,Pospill
RANGE E1,u1,R1, P1, Nvesicles,PrP, inclugludir1spike,
inclugluspill1spike
}
UNITS{
(molar)=(1/liter)
(mM)=(millimolar)
(um)=(micron)
(nA)=(nanoamp)
}
CONSTANT {
PI=3.1415927
}
PARAMETER { Deff=0.052 (um2/ms): effective difusion coefficient
nu=1.72(1/um2) : density of release sites
rabs= 3.6 (um) : radius of absorbing boundary
c0cleft = 5.167 (mM): initial glutamate concentration after release
rPSD=0.11 (um): radius of postsynaptic density
taurec=5000 (ms): time constant of recovery, very large in this simulation
tauin=3 (ms): time constant of decay of released substance
taufacil=0(ms): time constant of facilitation
usr=0.3 : vesicle release probability
u0=0 <0,1> : initial value for the "facilitation variable"
meandist=0.24 (um) : minimal limit of spillover [glu] integration
alpha=5 : 1/extracellular volume fraction
h=0.02(um): cleft width
Rmf=2.5(um): radius of mossy fiber
Popeak=0.655 : adjusted open release probability of AMPA receptors
inclugludir=1 : include direct release for the second spike
inclugluspill=1 : include release of spillover glutamate for the second
: spike
inclugludir1spike=1: include direct release for the first spike
inclugluspill1spike=1: include release of spillover glutamate
: for the first spike
Nvesicles=2 : number of ready to release vesicles
tm1=0: shift for experimental mEPSC
td1=0: shift for experimental direct EPSC
ts1=0: shift for experimental spillover EPSC
}
VERBATIM
static int i, n,ii, includir[50],incluspill[50];
static double l[200000], t0[50],nuac[50],add;
extern float bessj1(float);
ENDVERBATIM
ASSIGNED{
: Podir
: Pospill
Nsp : number of spikes
tx1(ms) : time of release
gludir (mM)
gluspill(mM)
vspr
glu (mM)
sum[50] (um)
sum0[50] (um)
sum02[50]
sum2[50]
sum1[50](um2)
sum01[50](um2)
nua (/um2): density of active release sites
R1 : availability of vesicle
u1 : vesicle release probability
E1
P1: release probability
PrP: release probability for the first release
}
INITIAL {
tx1=10000000
glu=0
gludir=0
gluspill=0
PrP=0
nua=0
R1=1
E1=0
u1=0
Nsp=0
}
BREAKPOINT
{
at_time(tx1)
if (t<=tx1){
glu=0
:Podir=0
:Pospill=0
gludir=0
gluspill=0
}
if (t>tx1){
VERBATIM
l[0]=0;
l[1]=2.4048;l[2]=5.5201;l[3]=8.65;
gluspill=0; gludir=0;
for (ii=1; ii<=n;ii++){
includir[ii]=0;
incluspill[ii]=0;
includir[1]=inclugludir1spike;
includir[2]=inclugludir;
incluspill[1]=inclugluspill1spike;
incluspill[2]=inclugluspill;
sum[ii]=0; i=1;
do
{if (i>=4) l[i]=PI*(4*i-1)/4;
sum0[ii]=sum[ii];
add=(l[i]/rabs)*(l[i]/rabs)*Deff*(t0[ii]-t);
if (add<-20.0) add=-20.0;
sum[ii] =sum[ii]+bessj1((l[i]/rabs)*rPSD)/((l[i]/rabs)*
bessj1(l[i])*
bessj1(l[i]))* exp(add);
i++; }
while (fabs(sum[ii]-sum0[ii])>=0.01);
sum2[ii]=0;i=0;
do
{sum02[ii]=sum2[ii];
sum2[ii]=sum2[ii]+(4/((2*i+1)*PI))*sin((2*i+1)*PI*h/(2*(rabs-Rmf)))*
exp(Deff*(2*i+1)*(2*i+1)*PI*PI*(t0[ii]-t)/(4*(rabs-Rmf)*(rabs-Rmf)));
i++;}
while(fabs(sum2[ii]-sum02[ii])>=0.001);
gludir =gludir+includir[ii]* 2*c0cleft*rPSD*sum[ii]*sqrt(alpha*sum2[ii])/(rabs*rabs);
if(gludir>c0cleft) gludir=c0cleft;
sum1[ii]=0;i=1;
do
{if (i>=4) l[i]=PI*(4*i-1)/4;
sum01[ii]=sum1[ii];
sum1[ii]=sum1[ii]+(Rmf*bessj1((l[i]/rabs)*Rmf)- meandist
* bessj1((l[i]/rabs)* meandist))/
((l[i]/rabs)*bessj1(l[i])*bessj1(l[i]))*exp((l[i]/rabs)*(l[i]/rabs)*
Deff*(t0[ii]-t));
i++;}
while (fabs(sum1[ii]-sum01[ii])>=0.0001);
gluspill= gluspill+incluspill[ii]*2*PI*nuac[ii]*c0cleft*rPSD*rPSD*
sum1[ii]*sqrt(sum2[ii]*alpha)/(rabs*rabs);
}
ENDVERBATIM
glu= gludir + gluspill
: Experimental waveforms
: Podir=(0.94*exp((tx1-t)/0.6(ms))+0.06*exp((tx1-t)/3.57(ms))
: -exp((tx1-t)/0.326(ms)))/0.246*(0.43/0.484)*Popeak
: Pospill=(0.39*exp((tx1-t)/3.25(ms))+0.61*exp((tx1-t)/14.78(ms))-
: exp((tx1-t)/0.721(ms)))/0.682*(0.125/0.484)*Popeak
}
}
NET_RECEIVE (weight,Eav,R, u,P,nspike, tsyn (ms))
{
INITIAL
{
R=1
Eav=0
u=u0
tsyn=t
nspike=0
}
nspike=nspike+1
vspr=((1-R-Eav)/taurec+(R-1)/tauin)/(1/tauin-1/taurec)
R=1+exp((tsyn-t)/taurec)*vspr+exp((tsyn-t)/tauin)*(R-1-vspr)
Eav=Eav*exp((tsyn-t)/tauin)
if (taufacil>0){
u=u*exp((tsyn-t)/taufacil)
}else {
u=usr
}
if (taufacil>0) {
state_discontinuity (u, u+usr*(1-u))
}
if (Nvesicles==1){P=u}
if(Nvesicles==2){P=(1-(1-u)^2)}
nua=0
: printf("Eav= %f\n",Eav)
if (nspike==1 || Nvesicles==1){
state_discontinuity (Eav, Eav+P*R)
state_discontinuity (nua, nua+nu*P*R)
}
if(nspike==2&& Nvesicles==2){
state_discontinuity (Eav, Eav+u*PrP+P*R)
state_discontinuity(nua, nua+nu*(u*PrP+P*R))
}
:printf("R= %f\n",R)
:printf("u= %f\n",u)
{state_discontinuity(R, R-P*R)}
PrP=P
tsyn=t
tx1=t
E1=Eav
R1=R
u1=u
P1=P
Nsp=nspike
VERBATIM
n=Nsp;
t0[n]=tx1;
nuac[n]=nua;
ENDVERBATIM
}