This repository has been archived by the owner on Sep 23, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstructure.py
507 lines (387 loc) · 16.7 KB
/
structure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import numpy as np
from pprint import pprint
def sigmoid(z):
return 1.0/(1.0+np.exp(-z))
def sigmoid_prime(z):
return sigmoid(z)*(1-sigmoid(z))
def sigmoid_prime_rawvalue(z): #We already give calculated value
return z*(1-z)
class Cost:
@staticmethod
def calc(neuron: np.array, expected: np.array) -> np.array:
raise NotImplementedError
@staticmethod
def derative(neuron: np.array, expected: np.array) -> np.array:
raise NotImplementedError
class QuadraticCost(Cost):
@staticmethod
def calc(neuron: np.array, expected: np.array) -> np.array:
return np.square(neuron - expected)
@staticmethod
def derative(neuron: np.array, expected: np.array) -> np.array:
return 2 * (neuron - expected)
class ECost(Cost):
@staticmethod
def calc(neuron: np.array, expected: np.array) -> np.array:
return np.square(np.e**neuron - np.e**expected)
class Neuron:
def __init__(self, index: int, is_input: bool = False, parents: list = None, char: str = None):
if not is_input:
self.parents = parents
self.weights = np.random.random(len(parents))
self.bias = np.random.random()
self.delta_weights = np.array([0.0] * len(parents))
self.is_input = is_input
self.value = 0.0
self.hidden_value = 0.0
self.index = index
self.char = char
def __mul__(self, other):
return self.value * other
def is_son(self, neuron):
return neuron in self.parents
def connected_weight(self, neuron) -> float:
return self.weights[self.parents.index(neuron)]
@property
def wxb(self) -> float:
return np.sum(self.parents * self.weights) #+ self.bias FIXME
@property
def parents_input(self) -> float:
return np.sum(np.array([neuron.value for neuron in self.parents]))
@property
def uid(self) -> str:
to_print = "%.2f" % self.value
return f"{self.name}-{to_print}"
def update_value(self) -> None:
self.hidden_value = float(self.wxb)
self.value = float(sigmoid(self.wxb))
#print(self.value)
@property
def name(self):
return f"{self.char}{self.index}"
class NeuronLayer:
def __init__(self, index: int, neuron_count: int,
parent=None,
cost: Cost = QuadraticCost):
char = chr(65+index)
if index == 0:
self.neurons = [Neuron(_, True, char=char) for _ in range(neuron_count)]
else:
self.neurons = [Neuron(_, parents=parent.neurons, char=char) for _ in range(neuron_count)]
self.parent = parent
self.is_input = (index == 0)
self.index = index
self._cost = cost
def cost(self, expected: np.array) -> float:
return float(np.sum(self._cost.calc(np.array([neuron.value for neuron in self.neurons]), expected)))
def input(self, input_data: np.array) -> None:
if not self.is_input:
raise TypeError("Layer is not an input layer!")
for neuron, value in zip(self.neurons, input_data):
neuron.value = value
def update(self) -> None:
for neuron in self.neurons:
neuron.update_value()
def visualize(self, graph):
for neuron in self.neurons:
graph.node(f"{neuron.name} = {round(float(neuron.value), 2)}", shape='circle', style="filled",
fillcolor="#"+3*f"{int(round(float(neuron.value*255))):0>2x}")
def update_weight_bias(self, weight: np.array, bias: np.array) -> None:
for neuron, new_data, bias_ in zip(self.neurons, weight, bias):
neuron.weights += np.array(new_data)
neuron.bias += float(bias_)
print(f"DEBUG: {neuron.name} Updated!")
class LayerNetwork:
def __init__(self, size: list, cost: Cost = QuadraticCost):
self.cost = cost
self.size = size
layer = None
layers = []
for index, layer_size in enumerate(size):
layer = NeuronLayer(index, layer_size, parent=layer, cost=cost)
layers.append(layer)
self.layers = layers
def input(self, data: np.array) -> None:
self.layers[0].input(data)
for layer in self.layers[1:]:
#print(f"DEBUG: Layer {layer.index} is updating values...")
layer.update()
def out_matrix(self, layer):
weights = []
if(not layer == self.layers[-1]):
forward_layer = self.layers[self.layers.index(layer)+1]
for neuron in forward_layer.neurons:
for i in range(len(neuron.weights)): #FIXME needed?
weights.append(neuron.weights[i])
return weights
#input of given layer
def input_matrix(self, layer):
value = []
previous_index = self.layers.index(layer)-1
if(previous_index >= 0):
for neuron in self.layers[previous_index].neurons:
value.append(neuron.value)
return value
def hidden_layer_matrix_prime(self, layer):
hidden_value = []
for neuron in layer.neurons:
hidden_value.append(sigmoid_prime(neuron.hidden_value))
return hidden_value
def save(self, fn) -> None:
import pickle
with open(fn, "wb") as f:
pickle.dump(self, f)
def load(self, fn) -> None:
import pickle
with open(fn, "rb") as f:
pickle.load(f)
def get_output(self) -> np.array:
return np.array([neuron.value for neuron in self.layers[-1].neurons])
def get_cost(self, expected: np.array) -> float:
return self.layers[-1].cost(expected)
def get_gradient(self, target: np.array, a: float = 0.000001) -> list:
delta = {}
errors = {}
totalError = 0
delta_output_sum = 0
for target, calculated in zip(target,self.get_output()):
totalError += target-calculated
delta_output_sum = sigmoid_prime(self.layers[-1].neurons[0].hidden_value) * totalError
delta_hidden_sum = []
for layer in self.layers[::-1]:
for neuron in layer.neurons:
#OUT LAYER
if self.layers[-1] == layer:
for i in range(len(neuron.weights)):
neuron.delta_weights[i] = delta_output_sum / neuron.parents[i].value
#MIDDLE LAYER
hidden_layer_logic = layer != self.layers[-1] and layer != self.layers[0]
if(hidden_layer_logic):
weights = delta_output_sum / self.out_matrix(layer)
hidden_layer = self.hidden_layer_matrix_prime(layer)
delta_hidden_sum = weights * hidden_layer
delta_weights = []
for _input in self.input_matrix(layer):
for hid_sum in delta_hidden_sum:
delta_weights.append(hid_sum/_input)
for neuron in layer.neurons:
for i in range(len(neuron.weights)):
neuron.delta_weights[i] = delta_weights.pop(0)
#INPUT LAYER
# if self.layers[-1] == layer:
# errors[neuron.name] = (target[neuron.index] - neuron.value)
# else:
# error = 0
# for son_neuron in self.layers[layer.index+1].neurons:
# if son_neuron.is_son(neuron):
# error += errors[son_neuron.name] * son_neuron.connected_weight(neuron)
# errors[neuron.name] = error
# #print(f"error for {neuron.name} : {errors[neuron.name]}")
# delta[neuron.name] = errors[neuron.name] * sigmoid_prime(neuron.value)
#print(f"delta for {neuron.name} : {delta[neuron.name]}")
#print(f"Err {neuron.name} : {errors[neuron.name]}")
#print(f"Delta {neuron.name} : {delta[neuron.name]}")
return delta
def visualize(self, fn: str = None, label: str = None) -> None:
import itertools
import graphviz
graph = graphviz.Digraph(format="png")
graph.attr(rankdir="LR", ranksep="4", label=label)
for layer in self.layers:
layer.visualize(graph)
for old, new in zip(self.layers[:-1], self.layers[1:]):
for old_, new_ in itertools.product(old.neurons, new.neurons):
graph.edge(f"{old_.name} = {round(float(old_.value), 2)}",
f"{new_.name} = {round(float(new_.value), 2)}",
label=str(new_.weights[old.index]))
if fn is None:
graph.view()
else:
graph.render(fn)
#Renders the neuron's name with value and weights
def print(self) -> None:
from graphviz import Digraph
f = Digraph('ANN', filename='ann', format="png")
f.attr(rankdir='LR', size='8.5')
f.attr('node', shape='circle')
for layer in self.layers:
for neuron in layer.neurons:
f.node(neuron.uid)
if(not neuron.is_input):
for i in range(len(neuron.weights)):
we = "%.2f" % neuron.weights[i]
f.edge(neuron.parents[i].uid, neuron.uid, label=we)
f.view()
def feed(self, data: np.array, expected: np.array = None, iter: int=0) -> np.array:
self.input(data)
out = self.get_output()
if(iter%10 == 0):
print(f'Iter{iter} Data: {data} \nExpected: {expected} \nOutput:{out}')
if expected is not None:
self.backprop(expected)
return out
def backprop(self, expected: np.array):
#print(f"INFO: Cost: {self.get_cost(expected)}")
grad = self.get_gradient(expected)
#for weight, bias_, layer in zip(grad[::-1], bias[::-1], self.layers[1:]):
# layer.update_weight_bias(weight, bias_)
alpha = 0.01
for layer in self.layers[:0:-1]:
for neuron in layer.neurons:
for i in range(len(neuron.weights)):
neuron.weights[i] += neuron.delta_weights[i] * alpha
# for layer in self.layers[:0:-1]:
# for neuron in layer.neurons:
# for i in range(len(neuron.weights)):
# neuron.weights[i] += alpha * grad[neuron.name] * neuron.parents_input
# if(neuron.name == "D70"):
# a=2
#print(f"INFO: {grad[neuron.name] * neuron.parents_input} -- {grad[neuron.name]} * {neuron.parents_input}")
#print(f"{neuron.name}")
def get_response(self, data: np.array) -> tuple:
out = self.feed(data)
pos = np.argmax(out)
acc = out[pos]
return pos, float(acc)
def main():
#priorStatus()
#validation()
#print(sigmoid(1.3))
simpleEx()
def simpleEx():
net = LayerNetwork([2, 3, 1])
net.layers[1].neurons[0].weights[0] = 0.8
net.layers[1].neurons[0].weights[1] = 0.2
net.layers[1].neurons[1].weights[0] = 0.4
net.layers[1].neurons[1].weights[1] = 0.9
net.layers[1].neurons[2].weights[0] = 0.3
net.layers[1].neurons[2].weights[1] = 0.5
net.layers[2].neurons[0].weights[0] = 0.3
net.layers[2].neurons[0].weights[1] = 0.5
net.layers[2].neurons[0].weights[2] = 0.9
for i in range(1000):
i_1 = np.random.random()
if(i_1 > 0.5):
i_1 = 1
else:
i_1 = 0.001
i_2 = np.random.random()
if(i_2 > 0.5):
i_2 = 1
else:
i_2 = 0.001
out = 0
if(i_1 == 1 and i_2 == 1):
out = 1
if(i_1 == 0 and i_2 == 0):
out = 1
net.feed(np.array([i_1,i_2]), np.array([out]))
net.print()
def layerEx():
inputLayer = NeuronLayer(0, 3, 50)
layer1 = NeuronLayer(1, 5, inputLayer,10)
inputLayer.input([1,2,3])
layer1.update()
def neuronExper():
inputNeuron = Neuron(1, True, char='a')
firstNeuron = Neuron(2, parents=[inputNeuron], char='b')
inputNeuron.value = 5
firstNeuron.update_value()
#print(f"{firstNeuron.value}")
def validation():
net = LayerNetwork([10, 50 , 100])
for i in range(10000):
x = int(np.random.random()*10)
data = np.array([0.0]*10)
data[x] = 1
y = functionToReplicate(x)
expected = np.array([0.0]*100)
expected[y] = 1
net.feed(data, expected, i)
def functionToReplicate(x: int) -> int:
return x*x
def priorStatus():
net = LayerNetwork([784, 16, 16, 10])
import json
with open("mnist.json") as f:
train_data = json.load(f)
print(train_data[0])
for i, data in enumerate(train_data[:1000]):
data['data'] = np.array(data['data']) / 255
res = np.array([0.0]*10)
res[int(data['label'])] = 1.0
net.feed(data['data'], res)
print(f"Iteration: {i}")
# net.save("mnist.nn")
# net.visualize(fn=f"iters/iteration_{i}.gv", label=data['label'])
# print("done rendering")
costs = []
for i, data in enumerate(train_data[:50]):
data['data'] = np.array(data['data']) / 255
res = np.array([0.0]*10)
res[int(data['label'])] = 1.0
pos, accuracy = net.get_response(data['data'])
costs.append(net.get_cost(res))
print(f"Guess: {pos}\nCertainty: {accuracy}\nCorrect: {data['label']}\n-------------------------------")
print(f"Final cost: {sum(costs)/len(costs)}")
print("NET STATE")
for layer in net.layers:
print(f"LAYER {layer.index}")
print([n.value for n in layer.neurons])
return net
if __name__ == "__main__":
main()
#deltaChange = eTotal regard output * out regard Net * net regard weight
# err = []
# weights = []
# #out - target
# errorRegardingOutput = neuron.value - target[neuron.index] ##external layer!!!! target
# #how output change respect total net input
# outputRegardingNet = sigmoid_prime_rawvalue(output_network[neuron.index])
# #how the weight is influencing
# inputRegardingWeight = neuron.parentsInput
# weight_updates[neuron.index] = (errorRegardingOutput * outputRegardingNet * inputRegardingWeight) * a
# errors[neuron.index] = (target[neuron.index] - neuron.value) * sigmoid_prime_rawvalue(neuron.value)
# errors[neuron.index] = ()
# for prev_neuron in layer.parent.neurons:
# if layer == self.layers[-1]:
# # d_N = f'(x) * (yN - t)
# d_n = sigmoid_prime(prev_neuron.value) * self.cost.derative(neuron.value, output[neuron.index])
# errors.append(float(d_n))
# weights.append(-a * float(d_n))
# else:
# # d_n = f'(x) * d_n+1 * w_n
# next_layer = errors[len(self.layers) - layer.index - 2]
# print(f"{next_layer}")
# next_layer_neuron_weight = np.sum([next_neuron[neuron.index]
# for next_neuron in next_layer])
# d_n = (sigmoid_prime(prev_neuron.value) *
# next_layer_neuron_weight *
# neuron.weights[prev_neuron.index])
# errors.append(float(d_n))
# weights.append(float(-a * next_layer_neuron_weight * neuron.value))
# weight_neurons.append(weights)
# errors.append(neurons)
# weight_updates.append(weight_neurons)
# bias_updates = []
# for layer in self.layers[:0:-1]:
# neurons = []
# for neuron in layer.neurons:
# """
# if layer == self.layers[-1]:
# # d_N = f'(x) * (yN - t)
# d_n = sigmoid_prime(prev_neuron.value) * (neuron.value - output[neuron.index])
# neurons.append(-a * float(d_n))
# else:
# # d_n = f'(x) * d_n+1 * b_n
# next_layer = bias_updates[len(self.layers) - layer.index - 2]
# inv_a = -1 / a
# next_layer_neuron_weight = np.sum(
# inv_a * next_neuron for next_neuron in next_layer)
# d_n = (sigmoid_prime(prev_neuron.value) *
# next_layer_neuron_weight *
# neuron.bias)
# neurons.append(-a * float(d_n))
# """
# neurons.append(0.0)
# bias_updates.append(neurons)