-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune.py
70 lines (61 loc) · 2.25 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import json
import torch
import colossalai
from tqdm import tqdm
from colossalai.booster import Booster
from colossalai.cluster import DistCoordinator
from colossalai.nn.optimizer.hybrid_adam import HybridAdam
from transformers import AutoModelForCausalLM, AutoTokenizer
from colossalai.booster.plugin import HybridParallelPlugin
# model_name = "Qwen/Qwen2.5-0.5B-Instruct"
model_name = "/root/dataDisk/model/qwen"
data_path = "/root/commonData/Wukong/wukong.jsonl"
# init dist env
colossalai.launch_from_torch()
coordinator = DistCoordinator()
# init plugin & booster
plugin = HybridParallelPlugin(
tp_size=1,
pp_size=1,
zero_stage=1,
enable_fused_normalization=torch.cuda.is_available(),
microbatch_size=1,
precision="bf16",
)
booster = Booster(plugin=plugin)
# init model, tokenizer, optimizer
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="cuda"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
optimizer = HybridAdam(model.parameters())
# load data & init data
messages = []
with open(data_path) as f:
for line in f:
content = json.loads(line)['messages'][0]['content']
messages.append(content)
encoded_batch = tokenizer(messages, padding=True, truncation=True, return_tensors="pt")
dataloader = plugin.prepare_dataloader(encoded_batch, batch_size=4, shuffle=True, drop_last=True, seed=42)
model, optimizer, _, dataloader, _ = booster.boost(model, optimizer, dataloader=dataloader)
# Train
for epoch in range(10):
# for step, batch in enumerate(tqdm(iter([encoded_batch]), desc="Step")):
for step, batch in enumerate(tqdm(dataloader, desc="Step")):
for k, v in batch.items():
batch[k] = v.to('cuda:0')
outputs = model(**batch)
loss = outputs[0]
del outputs # free memory
print(f"Epoch {epoch} Step {step} loss: {loss}")
# loss.mean().backward()
booster.backward(loss, optimizer)
optimizer.step()
optimizer.zero_grad()
# save model use booster
model_ckpt_path = "/root/dataDisk/model/qwen_shard_save"
optimizer_ckpt_path = "/root/dataDisk/model/qwen_shard_optim_save"
booster.save_model(model, model_ckpt_path, shard=True)
booster.save_optimizer(optimizer, optimizer_ckpt_path, shard=True)