-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCheck_Parameters_ARIMA
59 lines (49 loc) · 1.79 KB
/
Check_Parameters_ARIMA
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import warnings
from pandas import read_csv
from pandas import datetime
from statsmodels.tsa.arima_model import ARIMA
from sklearn.metrics import mean_squared_error
# evaluate an ARIMA model for a given order (p,d,q)
def evaluate_arima_model(X, arima_order):
# prepare training dataset
train_size = int(len(X) * 0.7)
train, test = X[0:train_size], X[train_size:]
history = [x for x in train]
# make predictions
predictions = list()
for t in range(len(test)):
model = ARIMA(history, order=arima_order)
model_fit = model.fit(disp=0)
yhat = model_fit.forecast()[0]
predictions.append(yhat)
history.append(test[t])
# calculate out of sample error
error = mean_squared_error(test, predictions)
return error
# evaluate combinations of p, d and q values for an ARIMA model
def evaluate_models(dataset, p_values, d_values, q_values):
dataset = dataset.astype('float32')
print(dataset)
best_score, best_cfg = float("inf"), None
for p in p_values:
for d in d_values:
for q in q_values:
order = (p, d, q)
try:
mse = evaluate_arima_model(dataset, order)
if mse < best_score:
best_score, best_cfg = mse, order
print('ARIMA%s MSE=%.3f' % (order, mse))
except:
continue
print('Best ARIMA%s MSE=%.3f' % (best_cfg, best_score))
print('Best ARIMA%s MSE=%.3f' % (best_cfg, best_score))
series = read_csv('sugar.csv', header=0, parse_dates=[0], index_col=0)
# evaluate parameters
print(series)
p_values = [1, 3]
d_values = range(0, 3)
q_values = range(0, 3)
warnings.filterwarnings("ignore")
evaluate_models(series.values, p_values, d_values, q_values)
print(series)