-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathbigcn.py
226 lines (201 loc) · 9.77 KB
/
bigcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# -*- coding: utf-8 -*-
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from layers.dynamic_rnn import DynamicLSTM
from torch.autograd import Variable
import constant
import torch_utils
import numpy as np
import scipy.sparse as sp
#普通GCN的卷积
class GraphConvolution(nn.Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=True):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = nn.Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = nn.Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
def forward(self, text, adj):
hidden = torch.matmul(text, self.weight)
denom = torch.sum(adj, dim=2, keepdim=True) + 1
output = torch.matmul(adj, hidden) / denom
if self.bias is not None:
return output + self.bias
else:
return output
class GraphConvolutionFRE(nn.Module):
def __init__(self, in_features, out_features, bias=True):
super(GraphConvolutionFRE, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = nn.Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = nn.Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
def forward(self, text, adj):
hidden = torch.matmul(text, self.weight)
deom = adj > 0.5
deom = Variable(deom.float())
denom = torch.sum(deom, dim=1, keepdim=True) + 1
output = torch.matmul(adj, hidden) / denom
if self.bias is not None:
return output + self.bias
else:
return output
class GraphConvolutionRE(nn.Module):
def __init__(self, in_features, out_features,rela_len, bias=True,frc_lin=False):
super(GraphConvolutionRE, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.rela_len = rela_len
self.weight = nn.Parameter(torch.FloatTensor(in_features,out_features//rela_len))
self.frc_lin = frc_lin
if self.frc_lin == True:
self.fre_line = nn.Linear((out_features//rela_len)*rela_len, out_features)
if bias:
self.bias = nn.Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
def forward(self, text, adj_re):
hidden = torch.matmul(text, self.weight)
adj_re = adj_re.permute(1,0,2,3)
denom1 = torch.sum(adj_re[0], dim=2, keepdim=True) + 1
output = torch.matmul(adj_re[0], hidden) / denom1
output = F.softmax(output,dim=-1)
for i in range(1,self.rela_len):
denom2= torch.sum(adj_re[i], dim=2, keepdim=True) + 1
output2 = torch.matmul(adj_re[i], hidden) / denom2
output2 = F.relu(output2)
output = torch.cat([output,output2],dim=2)
if self.frc_lin:
output = self.fre_line(output)
if self.bias is not None:
return output + self.bias
else:
return output
class BiGCN(nn.Module):
def __init__(self, embedding_matrix,common_adj,fre_embedding,post_vocab, opt):
super(BiGCN, self).__init__()
self.opt = opt
D = opt.embed_dim
Co = opt.kernel_num
self.num_layer = opt.num_layer
self.post_vocab = post_vocab
self.post_size = len(post_vocab)
self.common_adj = common_adj
self.fre_embedding = fre_embedding
self.hidden_dim = opt.hidden_dim
self.embed = nn.Embedding.from_pretrained(torch.tensor(embedding_matrix, dtype=torch.float))
self.post_embed = nn.Embedding( self.post_size, opt.post_dim, padding_idx=constant.PAD_ID) if opt.post_dim > 0 else None
self.text_lstm = DynamicLSTM(opt.embed_dim+opt.post_dim, opt.hidden_dim//2, num_layers=1, batch_first=True, bidirectional=True)
self.gc1 = GraphConvolutionRE(opt.hidden_dim, opt.hidden_dim,5,frc_lin=True)
self.gc2 = GraphConvolutionRE(opt.hidden_dim, opt.hidden_dim,5,frc_lin=True)
self.gc3 = GraphConvolutionRE(opt.hidden_dim, opt.hidden_dim,8,frc_lin=True)
self.gc4 = GraphConvolutionRE(opt.hidden_dim, opt.hidden_dim,8,frc_lin=True)
self.gc5 = GraphConvolutionFRE(opt.hidden_dim, opt.hidden_dim)
self.gc6 = GraphConvolutionFRE(opt.hidden_dim, opt.hidden_dim)
self.fc = nn.Linear(2*opt.hidden_dim, opt.polarities_dim)
self.text_embed_dropout = nn.Dropout(0.3)
self.convs3 = nn.ModuleList([nn.Conv1d(D, Co, K, padding=K - 2) for K in [3]])
self.fc_aspect = nn.Linear(128, 2*D)
self.att_line = nn.Linear(opt.hidden_dim,2*opt.hidden_dim)
self.weight = nn.Parameter(torch.FloatTensor(2 * self.hidden_dim, 2 * self.hidden_dim))
self.bias = nn.Parameter(torch.FloatTensor(2 * self.hidden_dim))
def pre_frequency(self):
em = F.relu(F.softmax(self.gc5(self.fre_embedding, self.common_adj),dim=-1))
pre_em = F.relu(F.softmax(self.gc6(em, self.common_adj),dim=-1))
return pre_em
def cross_network(self,f0,fn):
fn_weight = torch.matmul(fn,self.weight)
fl = f0*fn_weight + self.bias + f0
x = fl[:,:,0:self.hidden_dim]
y = fl[:,:,self.hidden_dim:]
return x,y
def position_weight(self, x, aspect_double_idx, text_len, aspect_len):
batch_size = x.shape[0]
seq_len = x.shape[1]
aspect_double_idx = aspect_double_idx.cpu().numpy()
text_len = text_len.cpu().numpy()
aspect_len = aspect_len.cpu().numpy()
weight = [[] for i in range(batch_size)]
for i in range(batch_size):
context_len = text_len[i] - aspect_len[i]
for j in range(aspect_double_idx[i,0]):
weight[i].append(1-(aspect_double_idx[i,0]-j)/context_len)
for j in range(aspect_double_idx[i,0], aspect_double_idx[i,1]+1):
weight[i].append(0)
for j in range(aspect_double_idx[i,1]+1, text_len[i]):
weight[i].append(1-(j-aspect_double_idx[i,1])/context_len)
for j in range(text_len[i], seq_len):
weight[i].append(0)
weight = torch.tensor(weight).unsqueeze(2).to(self.opt.device)
return weight*x
def mask(self, x, aspect_double_idx):
batch_size, seq_len = x.shape[0], x.shape[1]
aspect_double_idx = aspect_double_idx.cpu().numpy()
mask = [[] for i in range(batch_size)]
for i in range(batch_size):
for j in range(aspect_double_idx[i,0]):
mask[i].append(0)
for j in range(aspect_double_idx[i,0], aspect_double_idx[i,1]+1):
mask[i].append(1)
for j in range(aspect_double_idx[i,1]+1, seq_len):
mask[i].append(0)
mask = torch.tensor(mask).unsqueeze(2).float().to(self.opt.device)
return mask*x
def forward(self, inputs):
text_indices, aspect_indices, left_indices, adj, adj2,_,_, post_emb = inputs
text_len = torch.sum(text_indices != 0, dim=-1)
aspect_len = torch.sum(aspect_indices != 0, dim=-1)
left_len = torch.sum(left_indices != 0, dim=-1)
aspect_double_idx = torch.cat([left_len.unsqueeze(1), (left_len+aspect_len-1).unsqueeze(1)], dim=1)
text = [self.embed(text_indices)]
if self.opt.post_dim > 0:
text +=[self.post_embed(post_emb)]
text = torch.cat(text,dim=2)
text = self.text_embed_dropout(text)
text_out, (_, _) = self.text_lstm(text, text_len)
text_fre_embedding = self.pre_frequency()
text_fre = nn.Embedding.from_pretrained(text_fre_embedding)
text_out_fre = text_fre(text_indices)
text_out_fre = self.text_embed_dropout(text_out_fre)
f0 = torch.cat([text_out_fre,text_out],dim=2) #x:fre y:syn
numlayer = self.num_layer
f_n = f0
for i in range(numlayer):
if i == 0:
x, y = self.cross_network(f0,f0)
x = F.softmax(self.gc3(self.position_weight(x,aspect_double_idx, text_len, aspect_len), adj2),dim=-1)
y = F.softmax(self.gc1(self.position_weight(y,aspect_double_idx, text_len, aspect_len), adj),dim=-1)
f_n = torch.cat([x,y],dim=2)
else:#多层的更新
x,y = self.cross_network(f0,f_n)
x = F.softmax(self.gc4(self.position_weight(x, aspect_double_idx, text_len, aspect_len), adj2),dim=-1)
y = F.softmax(self.gc2(self.position_weight(y, aspect_double_idx, text_len, aspect_len), adj),dim=-1)
f_n = torch.cat([x,y],dim=2)
aspect = self.embed(aspect_indices)
aa = [F.relu(conv(aspect.transpose(1, 2))) for conv in self.convs3]
aa = [F.max_pool1d(a, a.size(2)).squeeze(2) for a in aa]
aspect_v = torch.cat(aa, 1)
temp = self.fc_aspect(aspect_v).unsqueeze(2)
aa2 = F.tanh(f_n + temp.transpose(1, 2))
xaa = f_n * aa2
xaa2 = xaa.transpose(1, 2)
xaa2 = F.max_pool1d(xaa2, xaa2.size(2)).squeeze(2)
f_n_mask = self.mask(f_n, aspect_double_idx)
text_out = self.att_line(text_out)
alpha_mat = torch.matmul(f_n_mask, text_out.transpose(1, 2))
alpha = F.softmax(alpha_mat.sum(1, keepdim=True), dim=2)
x = torch.matmul(alpha, text_out).squeeze(1)
x = F.relu(x + xaa2)
output = self.fc(x)
return output