|
| 1 | +import unittest |
| 2 | +import trtorch |
| 3 | +from trtorch.logging import * |
| 4 | +import torch |
| 5 | +import torch.nn as nn |
| 6 | +from torch.nn import functional as F |
| 7 | +import torchvision |
| 8 | +import torchvision.transforms as transforms |
| 9 | +from model_test_case import ModelTestCase |
| 10 | + |
| 11 | + |
| 12 | +class TestAccuracy(ModelTestCase): |
| 13 | + |
| 14 | + def setUp(self): |
| 15 | + self.input = torch.randn((1, 3, 32, 32)).to("cuda") |
| 16 | + self.testing_dataset = torchvision.datasets.CIFAR10(root='./data', |
| 17 | + train=False, |
| 18 | + download=True, |
| 19 | + transform=transforms.Compose([ |
| 20 | + transforms.ToTensor(), |
| 21 | + transforms.Normalize((0.4914, 0.4822, 0.4465), |
| 22 | + (0.2023, 0.1994, 0.2010)) |
| 23 | + ])) |
| 24 | + |
| 25 | + self.testing_dataloader = torch.utils.data.DataLoader(self.testing_dataset, |
| 26 | + batch_size=1, |
| 27 | + shuffle=False, |
| 28 | + num_workers=1) |
| 29 | + self.calibrator = trtorch.ptq.DataLoaderCalibrator(self.testing_dataloader, |
| 30 | + cache_file='./calibration.cache', |
| 31 | + use_cache=False, |
| 32 | + algo_type=trtorch.ptq.CalibrationAlgo.ENTROPY_CALIBRATION_2, |
| 33 | + device=torch.device('cuda:0')) |
| 34 | + |
| 35 | + self.spec = { |
| 36 | + "forward": |
| 37 | + trtorch.TensorRTCompileSpec({ |
| 38 | + "input_shapes": [[1, 3, 32, 32]], |
| 39 | + "op_precision": torch.int8, |
| 40 | + "calibrator": self.calibrator, |
| 41 | + "device": { |
| 42 | + "device_type": trtorch.DeviceType.GPU, |
| 43 | + "gpu_id": 0, |
| 44 | + "dla_core": 0, |
| 45 | + "allow_gpu_fallback": False, |
| 46 | + } |
| 47 | + }) |
| 48 | + } |
| 49 | + |
| 50 | + def compute_accuracy(self, testing_dataloader, model): |
| 51 | + total = 0 |
| 52 | + correct = 0 |
| 53 | + loss = 0.0 |
| 54 | + class_probs = [] |
| 55 | + class_preds = [] |
| 56 | + |
| 57 | + with torch.no_grad(): |
| 58 | + idx = 0 |
| 59 | + for data, labels in testing_dataloader: |
| 60 | + data, labels = data.cuda(), labels.cuda(non_blocking=True) |
| 61 | + out = model(data) |
| 62 | + preds = torch.max(out, 1)[1] |
| 63 | + class_probs.append([F.softmax(i, dim=0) for i in out]) |
| 64 | + class_preds.append(preds) |
| 65 | + total += labels.size(0) |
| 66 | + correct += (preds == labels).sum().item() |
| 67 | + idx += 1 |
| 68 | + |
| 69 | + test_probs = torch.cat([torch.stack(batch) for batch in class_probs]) |
| 70 | + test_preds = torch.cat(class_preds) |
| 71 | + return correct / total |
| 72 | + |
| 73 | + def test_compile_script(self): |
| 74 | + |
| 75 | + fp32_test_acc = self.compute_accuracy(self.testing_dataloader, self.model) |
| 76 | + log(Level.Info, "[Pyt FP32] Test Acc: {:.2f}%".format(100 * fp32_test_acc)) |
| 77 | + |
| 78 | + trt_mod = torch._C._jit_to_backend("tensorrt", self.model, self.spec) |
| 79 | + int8_test_acc = self.compute_accuracy(self.testing_dataloader, trt_mod) |
| 80 | + log(Level.Info, "[TRT INT8 Backend] Test Acc: {:.2f}%".format(100 * int8_test_acc)) |
| 81 | + acc_diff = fp32_test_acc - int8_test_acc |
| 82 | + self.assertTrue(abs(acc_diff) < 3) |
| 83 | + |
| 84 | + |
| 85 | +def test_suite(): |
| 86 | + suite = unittest.TestSuite() |
| 87 | + suite.addTest(TestAccuracy.parametrize(TestAccuracy, model=torch.jit.load('./trained_vgg16.jit.pt'))) |
| 88 | + |
| 89 | + return suite |
| 90 | + |
| 91 | + |
| 92 | +suite = test_suite() |
| 93 | + |
| 94 | +runner = unittest.TextTestRunner() |
| 95 | +result = runner.run(suite) |
| 96 | + |
| 97 | +exit(int(not result.wasSuccessful())) |
0 commit comments