-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsdxl_pose.py
63 lines (49 loc) · 2.41 KB
/
sdxl_pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# Copyright (c) 2024, NVIDIA Corporation & Affiliates. All rights reserved.
#
# This work is made available under CC-BY-NC-SA-4.0.
# To view a copy of this license, visit
# https://github.com/NVlabs/T-Stitch/blob/main/LICENSE.txt
from diffusers import ControlNetModel, AutoencoderKL
from diffusers.utils import load_image
import numpy as np
import torch
import cv2
from PIL import Image
from tstitch_sd_utils import get_tstitch_pipepline_sdxl_controlnet
import os
import time
from controlnet_aux import OpenposeDetector
if __name__ == '__main__':
torch.set_grad_enabled(False)
torch.backends.cudnn.benchmark = True
cache_dir = './pretrained_models'
save_dir = f'./figures/controlnet_pose'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
prompt = "Ironman dancing in a futuristic city, high quality"
negative_prompt = "low quality, bad quality"
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/person.png")
openpose_image = openpose(image)
openpose_image.save(f"{save_dir}/pose_image.png")
controlnet_conditioning_scale = 0.5
controlnet = ControlNetModel.from_pretrained("thibaud/controlnet-openpose-sdxl-1.0", torch_dtype=torch.float16,
cache_dir=cache_dir)
large_sd = "stabilityai/stable-diffusion-xl-base-1.0"
small_sd = "segmind/SSD-1B"
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, cache_dir=cache_dir)
pipe = get_tstitch_pipepline_sdxl_controlnet(large_sd, small_sd, controlnet=controlnet, vae=vae)
ratios = np.arange(0, 1.1, 0.2)
ratios = [round(item, 1) for item in ratios]
latents = torch.randn(1, 4, 128, 128, device="cuda", dtype=torch.float16)
for ratio in ratios:
tic1 = time.time()
image = pipe(prompt, controlnet_conditioning_scale=controlnet_conditioning_scale,
image=openpose_image.resize((1024, 1024)), unet_s_ratio=ratio,
negative_prompt=negative_prompt).images[0]
tic2 = time.time()
print(f'ratio = {ratio}, time cost = {round(tic2 - tic1, 1)}s')
image.save(f"{save_dir}/sample-ratio-{ratio}.png")
with open(f'{save_dir}/prompt.txt', 'w') as f:
f.write(prompt + '\n')
f.write(negative_prompt + '\n')